935 research outputs found

    A Jewelry-Tech Experience: Teaching and Learning Model for Academic Training

    Get PDF
    [EN] The paper aims to describe an innovative teaching and learning process in jewelry-tech design. First of all, the paper analyzes the contemporary and multidisciplinary context, underlining the growing presence of a close connection between digital technologies and the world of accessory design, particularly jewelry. The need to define learning models that aim to integrate different skills to train new professional figures successfully is outlined in this context. Secondly, the paper presents and examines the case study "name of the workshop" held at the "name of the university," an international workshop conducted in academic training in collaboration with an Italian jewelry company. The results obtained during this experience are presented and underline effective methodologies and critical issues in conducting the workshop.Tenuta, L.; Cappellieri, A.; Testa, S.; Rossato, B. (2022). A Jewelry-Tech Experience: Teaching and Learning Model for Academic Training. En 8th International Conference on Higher Education Advances (HEAd'22). Editorial Universitat Politècnica de València. 609-618. https://doi.org/10.4995/HEAd22.2022.1461760961

    On the Different Abilities of Cross-Sample Entropy and K-Nearest-Neighbor Cross-Unpredictability in Assessing Dynamic Cardiorespiratory and Cerebrovascular Interactions

    Get PDF
    Nonlinear markers of coupling strength are often utilized to typify cardiorespiratory and cerebrovascular regulations. The computation of these indices requires techniques describing nonlinear interactions between respiration (R) and heart period (HP) and between mean arterial pressure (MAP) and mean cerebral blood velocity (MCBv). We compared two model-free methods for the assessment of dynamic HP–R and MCBv–MAP interactions, namely the cross-sample entropy (CSampEn) and k-nearest-neighbor cross-unpredictability (KNNCUP). Comparison was carried out first over simulations generated by linear and nonlinear unidirectional causal, bidirectional linear causal, and lag-zero linear noncausal models, and then over experimental data acquired from 19 subjects at supine rest during spontaneous breathing and controlled respiration at 10, 15, and 20 breaths minute^-1 as well as from 13 subjects at supine rest and during 60 head-up tilt. Linear markers were computed for comparison. We found that: (i) over simulations, CSampEn and KNNCUP exhibit different abilities in evaluating coupling strength; (ii) KNNCUP is more reliable than CSampEn when interactions occur according to a causal structure, while performances are similar in noncausal models; (iii) in healthy subjects, KNNCUP is more powerful in characterizing cardiorespiratory and cerebrovascular variability interactions than CSampEn and linear markers. We recommend KNNCUP for quantifying cardiorespiratory and cerebrovascular coupling

    A PROPOSAL FOR A HYBRID POWER TRAIN FOR A TRUCK

    Get PDF
    Aiming at reducing the emission of pollutants from automotive vehicles, international commissions indicate, at each given period, a target of admissible values for these pollutants, to be implemented by the automakers. A case like the future implementation of EuroVII, from 2025, in European regions. In parallel to these conditions, there are many studies with the objective of seeking alternatives for the propulsion of these combustion vehicles, for example, the application of fully electric or hybrid vehicles. This article aims to develop and implement a mathematical model for a proposal for a hybrid engine, in a low-power truck, resulting in a small diesel engine, powering the vehicle's alternator and battery, generating the charging for use in a main electric motor, that is, to develop with a focus on energy conservation and the environment, with a reduction in the size of a combustion engine and its emissions

    Concomitant evaluation of cardiovascular and cerebrovascular controls via Geweke spectral causality to assess the propensity to postural syncope

    Get PDF
    The evaluation of propensity to postural syncope necessitates the concomitant characterization of the cardiovascular and cerebrovascular controls and a method capable of disentangling closed loop relationships and decomposing causal links in the frequency domain. We applied Geweke spectral causality (GSC) to assess cardiovascular control from heart period and systolic arterial pressure variability and cerebrovascular regulation from mean arterial pressure and mean cerebral blood velocity variability in 13 control subjects and 13 individuals prone to develop orthostatic syncope. Analysis was made at rest in supine position and during head-up tilt at 60°, well before observing presyncope signs. Two different linear model structures were compared, namely bivariate autoregressive and bivariate dynamic adjustment classes. We found that (i) GSC markers did not depend on the model structure; (ii) the concomitant assessment of cardiovascular and cerebrovascular controls was useful for a deeper comprehension of postural disturbances; (iii) orthostatic syncope appeared to be favored by the loss of a coordinated behavior between the baroreflex feedback and mechanical feedforward pathway in the frequency band typical of the baroreflex functioning during the postural challenge, and by a weak cerebral autoregulation as revealed by the increased strength of the pressure-to-flow link in the respiratory band. GSC applied to spontaneous cardiovascular and cerebrovascular oscillations is a promising tool for describing and monitoring disturbances associated with posture modification

    Categorizing the Role of Respiration in Cardiovascular and Cerebrovascular Variability Interactions

    Get PDF
    Objective: Respiration disturbs cardiovascular and cerebrovascular controls but its role is not fully elucidated. Methods: Respiration can be classified as a confounder if its observation reduces the strength of the causal relationship from source to target. Respiration is a suppressor if the opposite situation holds. We prove that a confounding/suppression (C/S) test can be accomplished by evaluating the sign of net redundancy/synergy balance in the predictability framework based on multivariate autoregressive modelling. In addition, we suggest that, under the hypothesis of Gaussian processes, the C/S test can be given in the transfer entropy decomposition framework as well. Experimental protocols: We applied the C/S test to variability series of respiratory movements, heart period, systolic arterial pressure, mean arterial pressure, and mean cerebral blood flow recorded in 17 pathological individuals (age: 648 yrs; 17 males) before and after induction of propofol-based general anesthesia prior to coronary artery bypass grafting, and in 13 healthy subjects (age: 278 yrs; 5 males) at rest in supine position and during head-up tilt with a table inclination of 60. Results: Respiration behaved systematically as a confounder for cardiovascular and cerebrovascular controls. In addition, its role was affected by propofol-based general anesthesia but not by a postural stimulus of limited intensity. Conclusion: The C/S test can be fruitfully exploited to categorize the role of respiration over causal variability interactions. Significance: The application of the C/S test could favor the comprehension of the role of respiration in cardiovascular and cerebrovascular regulations

    In vitro synergisms obtained by amphotericin B and voriconazole associated with non-antifungal agents against Fusarium spp

    Get PDF
    AbstractFusarium spp is an opportunistic fungal pathogen responsible for causing invasive hyalohyphomycosis in immunocompromised patients. Due to its susceptibility pattern with a remarkable resistance to antifungal agents the treatment failures and mortality rates are high. To overcome this situation, combination therapy may be considered which must be subjected to in vitro tests.In vitro activities of amphotericin B, itraconazole, and voriconazole associated with azithromycin, ciprofloxacin, fluvastatin, ibuprofen, metronidazole, and also the combination of amphotericin B plus rifampin against 23 strains of Fusarium spp. through the checkerboard technique based on M38-A2 [Clinical and Laboratory Standards Institute (2008). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, 2nd ed. (CLSI document M38-A2) (ISBN 1-56238-668-9). Wayne, PA: CLSI] were evaluated.The best synergistic interactions with amphotericin B were with ibuprofen (43.5%) (FICI [fractional inhibitory concentration index] range = 0.25–2). Combinations with voriconazole showed synergism, mainly with ciprofloxacin (30.4%) (FICI range = 0.25–3) and metronidazole (30.4%) (FICI range = 0.1–4); however, all the combinations with itraconazole were indifferent. In general, antagonistic interactions were not registered.Our results showed that in vitro synergisms obtained by some combinations studied deserve attention since they were better than those showed by the antimycotic
    • …
    corecore