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Abstract: Nonlinear markers of coupling strength are often utilized to typify cardiorespiratory
and cerebrovascular regulations. The computation of these indices requires techniques describing
nonlinear interactions between respiration (R) and heart period (HP) and between mean arterial
pressure (MAP) and mean cerebral blood velocity (MCBv). We compared two model-free methods
for the assessment of dynamic HP–R and MCBv–MAP interactions, namely the cross-sample entropy
(CSampEn) and k-nearest-neighbor cross-unpredictability (KNNCUP). Comparison was carried
out first over simulations generated by linear and nonlinear unidirectional causal, bidirectional
linear causal, and lag-zero linear noncausal models, and then over experimental data acquired
from 19 subjects at supine rest during spontaneous breathing and controlled respiration at 10, 15,
and 20 breaths·minute−1 as well as from 13 subjects at supine rest and during 60◦ head-up tilt.
Linear markers were computed for comparison. We found that: (i) over simulations, CSampEn and
KNNCUP exhibit different abilities in evaluating coupling strength; (ii) KNNCUP is more reliable
than CSampEn when interactions occur according to a causal structure, while performances are
similar in noncausal models; (iii) in healthy subjects, KNNCUP is more powerful in characterizing
cardiorespiratory and cerebrovascular variability interactions than CSampEn and linear markers. We
recommend KNNCUP for quantifying cardiorespiratory and cerebrovascular coupling.

Keywords: model-free time series analysis; causality; coupling strength; cardiac control; cerebral
autoregulation; heart rate variability; blood flow; arterial pressure; autonomic nervous system;
controlled breathing; head-up tilt

1. Introduction

There are an increasing number of studies assessing the degree of coupling between
respiration (R) and heart period (HP) [1–7] and between mean arterial pressure (MAP) and
mean cerebral blood velocity (MCBv) [8–14]. This interest is justified by clinical relevance:
indeed, the degree of HP–R coupling is taken as a marker of vagal control being inherently
normalized by breathing activity [1–7], while the strength of the MCBv–MAP relationship
is an indicator of the efficiency of dynamic cerebral autoregulation (dCA) [8–14].

The dynamic interactions between R and HP and between MAP and MCBv feature
common characteristics: (i) they are inherently nonlinear; (ii) their strength is between the
maximum and the minimum values found in the presence of full coupling and perfect
uncoupling, respectively.
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Nonlinearities between R and HP result from the periodical inhibition of aortic arch,
carotid sinus, pulmonary, and atrial stretch receptor activity with R [15–17], reciprocal
influences between sympathetic and vagal activities [18–20], variations of HP variability with
both breathing rate and depth [21–23], phase locking between heartbeat and R rhythm [24–26],
and the gating activity of respiratory centers over vagal and sympathetic outflows [27–30].
On the other hand, nonlinearities between MAP and MCBv are the result of the shape of
the static characteristic of cerebrovascular autoregulation [31], different MCBv responses to
positive and negative MAP variations [32,33], respiratory modulations of the MCBv–MAP
relationship [34], effects of intracranial pressure on the critical closing pressure [35], and
nonlinear influences of the autonomic control, especially over long time scales [36].

The imperfect association between R and HP is the result of the huge number of
control mechanisms adapting HP regardless of R [37,38] and the variable cardiorespiratory
phase locking ratio [24,25,39]. The imperfect association between MAP and MCBv is the
consequence of the dCA aiming at keeping MCBv constant by buffering MAP changes with
suitable adaptations to vessel diameter [8–11].

Given the abovementioned features of the HP–R and MCBv–MAP couplings, nonlinear
tools should be preferred for the assessment of the strength of the interactions and these
methods should be reliable in the presence of weak relationships. The reliability of these
tools is a critical issue because modifications to HP–R and MCBv–MAP coupling strength
are hallmarks of pathology [1,2,8,9].

Cross-sample entropy (CSampEn) [40] and k-nearest-neighbor cross-unpredictability
(KNNCUP) [41] are two methods devised to assess nonlinear interactions between two time
series. The ability of CSampEn and KNNCUP to describe nonlinear dynamics lies in
their model-free nature that does not impose any form to the underlying relationship
between the observed series. After reconstructing the dynamics of the two series in two
distinct state spaces built via the time-delay embedding procedure, CSampEn estimates the
negative logarithm of the conditional probability that, if two patterns of length m − 1 are
similar, they remain alike after including one additional future value: the higher the
conditional probability, the smaller the negative logarithm, the stronger the relationship
and the coupling between the two series [40]. KNNCUP exploits the k patterns built over
m − 1 past samples of the driver signal, namely R and MAP in our application, selected
among others for their similarity with the reference vector, to predict the current value of
the target signal, namely HP and MCBv, respectively: the lower the unpredictability of the
target using the driver, the stronger the coupling from the driver to the target [41].

The aim of the present study is to compare the abilities of CSampEn and KNNCUP
to characterize cardiorespiratory and cerebrovascular couplings via the analysis of the
variability of R and HP and of MAP and MCBv. The two tools were first tested over
simulations generated by linear and nonlinear unidirectional causal, linear bidirectional
causal, and lag-zero linear noncausal models to better understand eventual differences in
assessing dynamic HP–R and MCBv–MAP interactions. CSampEn and KNNCUP were
then assessed in healthy subjects under experimental protocols inducing modifications
of the cardiorespiratory and cerebrovascular controls, namely controlled breathing (CB)
at different breathing rates [42,43] and head-up tilt (HUT) with a tilt table inclination of
60◦ [44,45]. Results of CSampEn and KNNCUP were compared with linear markers of cou-
pling [4,9]. Preliminary data were presented at the 44th Annual International Conference
of the Engineering in Medicine and Biology Society [46].

2. Methods
2.1. Generalities for the Computation of CSampEn and KNNCUP

Given two systems X and Y, their joint activity is described by two realizations,
x = {xn, 1 ≤ n ≤ N} and y = {yn, 1 ≤ n ≤ N}, of the stochastic processes X and Y, respectively.
The series x and y are usually collections of values recorded in experimental sessions designed
to probe into the interactions between X and Y. We denote: (i) the current value of y as yi; (ii) the
pattern formed by the m − 1 past values of yi as y−i =

[
yi−1 . . . yi−m+1

]
; and (iii) the m-
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dimensional vector obtained by concatenating yi with y−i as yi =
[
yi yi−1 . . . yi−m+1

]
.

We remark that y−i and yi can be interpreted indifferently as patterns of length, respec-
tively, and m − 1 and m in the time domain or points of, respectively, the (m − 1)- and
m-dimensional state phase spaces built uniformly using the method of lagged coordinates
in the state phase domain. Analogously, we define xj, x−j =

[
xj−1 . . . xj−m+1

]
, and

xj =
[
xj xj−1 . . . xj−m+1

]
the equivalent quantities computed over x. In order to char-

acterize the relationship, if present, between X and Y, we indicate the probability that yi and
xj are close in the m-dimensional state phase space within a tolerance r with p

(∥∥yi − xj
∥∥ ≤ r

)
and with p

(∥∥∥y−i − x−j
∥∥∥ ≤ r

)
the probability that y−i and x−j are closer than r in the (m − 1)-

dimensional state phase space, where ‖·‖ is a metric to compute distance. In this study the
adopted metric is the Euclidean norm.

2.2. CSampEn

CSampEn [40] is defined as the negative logarithm of the ratio of the averaged
p
(∥∥yi − xj

∥∥ ≤ r
)

to the averaged p
(∥∥∥y−i − x−j

∥∥∥ ≤ r
)

as

CSampEn(m, r, N) = −log

 〈
p
(∥∥yi − xj

∥∥ ≤ r
)〉〈

p
(∥∥∥y−i − x−j

∥∥∥ ≤ r
)〉
, (1)

where 〈·〉 performs the time average over all the reference vectors built from x and log(·) is
the natural logarithm. p

(∥∥yi − xj
∥∥ ≤ r

)
and p

(∥∥∥y−i − x−j
∥∥∥ ≤ r

)
are estimated by counting

the number of yi closer than r to xj for i = m, . . . , N and the number of y−i closer than r
to x−j for i = m − 1, . . . , N − 1 and by dividing them by N – m + 1. The unfortunate case

was that
〈

p
(∥∥yi − xj

∥∥ ≤ r
)〉

= 0 and/or
〈

p
(∥∥∥y−i − x−j

∥∥∥ ≤ r
)〉

= 0 were never observed in
our study given the adopted values of m and N. CSampEn is a measure of the negative
logarithm of the conditional probability that two points remain close in the m-dimensional
phase space given that they are close in the (m − 1)-dimensional phase space: the closer
to 1 the conditional probability, the lower the uncertainty associated with the reciprocal
position of patterns in the m-dimensional phase space, the smaller the CSampEn, the
stronger the relationship between X and Y.

2.3. KNNCUP

Cross-unpredictability (CUP) searches for the dependency f (·) of the future value
yi+τ of the dynamics of the target Y on m − 1 past samples x−i of the dynamics of the
driver X [41,47], where τ is the prediction horizon [14]. yi+τ is usually labelled as the
image of x−i through f (·) and x−i is the reference vector for the search of its k nearest
neighbors. Local CUP approach approximates f (·) in a region around x−i set by its k nearest
neighbors [48]. Given the adopted metric for evaluating distances in the phase space, the
region is a hypersphere and x−i is its center. The k nearest neighbors of the reference vector
x−i were utilized to predict yi+τ . The prediction of yi+τ , namely ŷi+τ , is defined as the
weighted mean of the images of the k nearest neighbors of x−i , where the weights are the
inverse of their distance from the reference vector. Vectors at zero distance from x−i were
excluded from the set of k nearest neighbors. ŷi+τ was computed as a function of time
i, thus providing the predicted series ŷ. The degree of unpredictability of Y given X is
measured via the CUP function defined as 1 − ρ2, where ρ2 is the squared correlation
coefficient between y and ŷ. CUP is bounded between 0 and 1, where 0 indicates that y
can be perfectly predicted from x and 1 indicates complete unpredictability of y based
on x. CUP depends on m. The course of CUP with m was the result of two opposite
tendencies [49]: (i) prediction of y given x might improve and CUP might decrease because
longer patterns built over x bring more information about the future behavior of y; (ii) at
high m, the k nearest neighbors tend to be far away from the reference vector due to the
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spreading of the vectors in the phase space and this effect raises CUP. The minimum of
the CUP function over m was taken as a measure of the uncoupling between x and y [41]
and referred to as the CUP index (CUPI): the closer to 0 the CUPI, the greater the ability to
predict y based on x, the stronger the relationship between X and Y.

3. Simulations
3.1. Graded Unidirectional and Bidirectional Causal Couplings

We simulated bivariate autoregressive (BAR) processes whose components feature
different degrees of coupling and causal relationships. The BAR process is defined as

X(n) = 2ρ1 · [c1 ·Y(n− 1) + (1− c1) · X(n− 1)] · cos ϕ1 − ρ2
1 · X(n− 2) + W1(n)

Y(n) = 2ρ2 · [c2 · X(n− 1) + (1− c2) ·Y(n− 1)] · cos ϕ2 − ρ2
2 ·Y(n− 2) + W2(n)

(2)

where W1 and W2 are Gaussian white noises with zero mean and variances assigned such
that X and Y exhibit unit variance. If c1 = 0 and c2 = 0, X and Y are two uncoupled
second-order autoregressive [AR(2)] processes. If c1 = 0 and c2 6= 0, the directional-
ity of the interactions is from X to Y (i.e., unidirectional causal model). If c1 6= 0 and
c2 6= 0, the directionality of the interactions is from X to Y and vice versa (i.e., bidirec-
tional causal model). In the uncoupled condition, the two processes X to Y were set
to feature dominant rhythms according to two configurations: (i) ρ1 = ρ2 = 0.8 with
phases ϕ1 = ±3π/5 and ϕ2 = ±3π/5 corresponding to an oscillation at normalized
frequency f1 = 0.3 cycles·sample−1 and f2 = 0.3 cycles·sample−1, thus simulating a domi-
nant rhythm in the high frequency (HF) band typical of spontaneous respiration driving
an HP rhythm at the same frequency with a mean HP equal to 1 s; (ii) ρ1 = ρ2 = 0.8 with
phases ϕ1 = ±π/5 and ϕ2 = ±π/5 corresponding to an oscillation at normalized frequency
f1 = 0.1 cycles·sample−1 and f2 = 0.1 cycles·sample−1, thus leading to a dominant rhythm
in the low frequency (LF) band typical of slow breathing driving an HP rhythm at the
same frequency with a mean HP equal to 1 s. Coupling strengths between X and Y were
varied according to the following setup: (i) c1 = 0 and c2 was varied incrementally from
0 to 1.0 in 0.1 steps, thus simulating unidirectional coupling from X to Y with incremental
coupling strength (i.e., from the respiratory system to the heart or from the systemic to
cerebral vasculature); c1 = c2 = c, and c was varied gradually from 0 to 1.0 in 0.1 steps, thus
simulating bidirectional coupling from X to Y and vice versa with incremental coupling
strength (i.e., from the respiratory system to the heart, or from the systemic to cerebral
vasculature, and vice versa).

3.2. Graded Lag-Zero Noncausal Coupling

We simulated a bivariate process whose components featured different degrees of cou-
pling in absence of any causal relationship. This bivariate process is obtained by corrupting
an AR(2) process X with a Gaussian white noise W2 with zero mean and standard deviation
taken as a fraction of the standard deviation of X. The bivariate process is defined as

Y(n) = X(n) + W2(n), (3)

where X is an AR(2) process with zero mean and unit standard deviation and W2 is
a Gaussian white noise with zero mean and standard deviation 1− c2. As in Section 3.1, X
exhibits dominant rhythms according to two pole configurations: (i) ρ1 = ρ2 = 0.8 with
phases ϕ1 = ±3π/5 and ϕ2 = ±3π/5; (ii) ρ1 = ρ2 = 0.8 with phases ϕ1 = ±π/5 and
ϕ2 = ±π/5. Since interactions between X and Y occur at lag-zero, directionality is not
set (i.e., the coupling is instantaneous), thus simulating noncausal interactions between
X and Y. If c2 = 1, X and Y are coincident and, assigned the outcome of the random
experiment, the points [x(n), y(n)] lie exactly on the diagonal line for n = 1, . . . , N, and
the two processes X and Y are fully coupled. c2 was varied incrementally from 0 to 1.0 in
0.1 steps, thus progressively decreasing the standard deviation of W2 and increasing the
coupling strength between X and Y.
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3.3. Unidirectionally-Coupled Identical Logistic Maps

Nonlinear dynamics were simulated via logistic maps. We considered two unidirectionally-
coupled identical logistic maps [50], described as

X(n) = f [X(n− 1)]

Y(n) = c2· f [X(n− 1)]+(1− c 2)· f [Y(n− 1)],
(4)

with
f [X(n− 1)] = r·X(n− 1)·[1− X(n− 1)]

f [Y(n− 1)] = r·Y(n− 1)·[1−Y(n− 1)].
(5)

Thus, X and Y are deterministic signals obtained by iterating (4) starting from the initial
conditions randomly chosen within the interval from 0.0 to 1.0. When c2 = 0, X and Y
evolve independently of each other because their initial conditions are different according
to the equations of the two logistic maps. Given that r = 3.7, the two logistic maps are in
chaotic regime. The coupling is unidirectional because Y does not affect X. The strength of
the interactions from X to Y increases with c2. The parameter c2 was varied from 0 to 1.0 in
0.1 steps.

4. Experimental Protocol and Data Analysis
4.1. Ethical Statement

The R and HP series were extracted from a historical database built to evaluate changes
in the cardiorespiratory coupling with the breathing rate in healthy subjects [42,43]. The
MAP and MCBv series belonged to another historical database built to study the dCA
during postural stimulus in healthy subjects [44,45]. All the original protocols were in
keeping with the Declaration of Helsinki. The protocols were approved by the local
ethical review board of the L. Sacco Hospital, Milan, Italy, and Sacro Cuore Don Calabria
Hospital, Negrar, Italy, respectively, and authorized by the same structures. Written
signed informed consent was obtained from all subjects. Physical examination and full
neurological evaluation certified the healthy status of all the subjects. The subjects were
not under pharmacological treatments interfering with cardiovascular and cerebrovascular
controls. Subjects avoided caffeinated and alcoholic beverages and heavy physical exercises
for 24 h before the study.

4.2. CB Protocol

Data were acquired from 19 healthy subjects (age: 27–35 years, median = 31 years;
8 males, 11 females) at rest in a supine position during spontaneous breathing (SB) and
during CB at 10, 15, and 20 breaths·minute−1, labelled as CB10, CB15, and CB20, respec-
tively. The period of SB always preceded the session of CB. The respiratory frequency of
the CB was selected randomly. The subjects performed all the CB sessions. The timing of
inspiratory and expiratory onsets was provided via a metronome and reinforced verbally
by the experimenter. All the experimental sessions lasted 10 min. The subjects were not
allowed to talk during the entire protocol. The electrocardiogram (ECG) was acquired
from lead II via a bioamplifier (Marazza, Monza, Italy) and respiratory flow via a nasal
thermistor (Marazza, Monza, Italy). Both signals were digitalized synchronously at 300 Hz
by an analog-to-digital 12-bit board (National Instruments, Austin, TX, USA) plugged into
a personal computer. From the ECG, we derived the beat-to-beat variability series of the
HP and a downsampled version of the R signal. After identifying the R-wave from the
ECG, the inter-heartbeat interval between the nth and (n + 1)th R-wave peaks was taken as
the nth HP. The R signal was sampled at the nth R-wave peak.

4.3. HUT Protocol

Data were acquired from 13 healthy subjects with no history of postural syncope (age:
27 ± 8 years; 5 males, 8 females). Subjects were instrumented to continuously monitor
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the ECG from lead II and noninvasive continuous arterial pressure (AP) from the middle
finger of the nondominant arm (Finapres Medical Systems, Enschede, The Netherlands).
The cerebral blood velocity (CBv), measured from the right, or left, middle cerebral artery
through a transcranial Doppler device (Multi-Dop T, DWL, 2 MHz, Compumedics, San
Juan Capistrano, CA, USA), was taken as a surrogate of cerebral blood flow [51]. The CBv
signal was low-pass filtered with a sixth-order Butterworth filter with a cut-off frequency of
10 Hz. The signals were acquired synchronously at a sampling rate of 1000 Hz. The subjects
underwent 10 min of recording at rest in a supine position (REST) followed by HUT with
a tilt table inclination of 60◦. Both sessions were under SB. Analyses were carried out 3 min
after the HUT onset and within the first 10 min of HUT. None of the subjects exhibited
presyncope signs. We utilized the detection of the R-wave on the ECG to trigger the process
of identification of systolic AP (SAP) and diastolic AP (DAP). The nth SAP was taken as
the maximum of the AP signal within the nth HP. The (n − 1)th DAP was defined as the
minimum of the AP signal preceding the nth SAP. The nth MAP was computed as the ratio
of the definite integral of AP between the occurrences of the (n − 1)th and nth DAP to the
inter-diastolic interval. The same procedure was applied to CBv to calculate the MCBv. The
fiducial points for the computation of MAP were utilized for the computation of the MCBv.

4.4. Time Domain Analysis

The HP, SAP, DAP, MAP, and MCBv series were manually checked and corrected in
case of missing beats or misdetections. The effects of ectopic beats or isolated arrhythmic
events were mitigated via linear interpolation. Synchronous sequences were randomly
selected within the whole recordings. The length of the series was kept constant regardless
of protocol and experimental condition. As to the CB protocol, we monitored the mean
and variance of the HP series. These markers were labeled as µHP and σ2

HP, respectively,
and expressed in ms and ms2. In the CB protocol, µHP did not vary compared to SB, being
1010 ± 168, 989 ± 157, 1023 ± 162, and 1028 ± 162 during SB, CB10, CB15, and CB20,
respectively, while σ2

HP increased solely during CB10 compared to SB, being 3368 ± 2622,
4784 ± 3356, 3705 ± 3091, and 2813 ± 2158 during SB, CB10, CB15, and CB20, respectively.
As to the HUT series, we monitored the mean and variance of the MAP and MCBv. These in-
dices were denoted as µMAP, σ2

MAP, µMCBv, and σ2
MCBv and expressed in mmHg, mmHg2,

cm·s−1 and cm2·s−2. In the HUT protocol, µMCBv decreased during HUT compared to
REST, being 72 ± 23 and 62 ± 21, respectively, while σ2

MCBv increased from 19 ± 12 to
26 ± 16. In the HUT protocol, µMAP and σ2

MAP did not vary with HUT: µMAP was 99 ± 17
and 95 ± 12 at REST and during HUT, respectively, while σ2

MAP was 18 ± 21 and 19 ± 12.

4.5. Computation of a Linear Marker of Association between Time Series

Squared coherence function K2
x,y( f ) provides an estimation of the degree of linear

association between x and y as a function of the frequency f [4]. It is computed as the ratio
of the square cross-spectrum modulus between x and y divided by the product of their
power spectra. By definition, K2

x,y( f ) is bounded between 0 and 1, where 0 and 1 indicate
the minimum and maximum correlation between x and y. A linear marker of the strength
of the cardiorespiratory coupling is commonly computed by sampling K2

R,HP( f ) at its peak
in the HF band (i.e., from 0.15 to 0.4 Hz) [4,7]. This marker is indicated as K2

R,HP(HF) in
the following. A linear marker of the strength of the cerebrovascular coupling is routinely
computed by sampling K2

MAP,MCBv( f ) at its peak in the very LF (VLF, from 0.02 to 0.07 Hz),
LF (from 0.07 to 0.15 Hz), and HF (i.e., from 0.15 to 0.4 Hz) bands [8,9]. These markers are
indicated as K2

MAP,MCBv(VLF), K2
MAP,MCBv(LF), and K2

MAP,MCBv(HF) in the following. The
superior limit of the LF band and the inferior limit of the HF were modified compared to
the original definition [8] to account for possible slow respiratory rhythms [12]. K2

R,HP( f )
and K2

MAP,MCBv( f ) were estimated according to a bivariate AR model [7]. The model order
was fixed to 10, and the coefficients of the bivariate AR model were identified via the least
squares approach [7].
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4.6. Computation of CSampEn and KNNCUP

Since the aim of the study was to explore the physiological mechanisms responsible
for short-term control of HP and MCBv, the length N of the series was set to 256 [8,52].
The series were first linearly detrended and then normalized to have zero mean and
unit variance. Cardiorespiratory coupling was assessed with x = R and y = HP, while
the cerebrovascular link was evaluated using x = MAP and y = MCBv. CSampEn
was computed over the normalized series with m = 3 and r = 0.2 [14]. KNNCUP was
performed with k = 30 [41]. Over simulated data, KNNCUP was computed with time
horizon τ = −1 in the case of lag-zero noncausal model and with time horizon τ = 0 in the
case of unidirectional and bidirectional causal models. Over experimental data, KNNCUP
was carried out with τ = −1 in agreement with the fast vagal actions responsible for
the respiratory sinus arrhythmia [23,53] and fast resistive component of the MCBv–MAP
relationship [54,55].

4.7. Statistical Analysis

One-way repeated measures analysis of variance (Dunnett’s test for multiple com-
parisons), or Friedman repeated measures analysis of variance on ranks if appropriate
(Dunnett’s test for multiple comparisons), was utilized to check the effect of CB versus SB.
A paired t-test, or a Wilcoxon signed rank test when appropriate, was applied to check
the effect of HUT. Statistical analysis was carried out using a commercial statistical pro-
gram (Sigmaplot, v.14.0, Systat Software, Inc., Chicago, IL, USA). A p < 0.05 was always
considered statistically significant.

5. Results
5.1. Results on Simulations

The line plot of Figure 1 shows the mean (solid line) and the confidence interval of
two standard deviations about the mean (dashed lines) of CSampEn (Figure 1a,c,e) and
CUPI (Figure 1b,d,f) computed over 20 realizations of X and Y. Simulations were generated
via linear unidirectional causal (Figure 1a,b), linear bidirectional causal (Figure 1c,d) and
lag-zero linear noncausal (Figure 1e,f) models. The simulated series featured a dominant HF
rhythm. Regardless of the type of simulations, the expectation is that the coupling strength
increases progressively with c2. According to this expectation, CUPI decreased gradually
with c2, and this result held in simulations of linear unidirectional causal (Figure 1b),
linear bidirectional causal (Figure 1d), and lag-zero linear noncausal (Figure 1f) couplings.
Conversely, CSampEn declined gradually solely in simulations relevant to the lag-zero linear
noncausal model (Figure 1e), being stable over unidirectional causal coupling (Figure 1a)
and paradoxically increasing in bidirectional causal interactions (Figure 1c). Results stress
the limited ability of CSampEn and the more reliable performance of CUPI.

Like Figure 1, Figure 2 shows the results of simulations generated via linear unidi-
rectional causal (Figure 2a,b), linear bidirectional causal (Figure 2c,d) and lag-zero linear
noncausal (Figure 2e,f) models. However, the results are relevant to 20 realizations of
X and Y featuring a dominant LF rhythm. The results stress the greater ability of CUPI
in following the increased coupling strength with c2. Indeed, CUPI gradually decreased
with c2 regarless of the type of simulations (Figure 2b,d,f). CSampEn exhibited bad perfor-
mance over causal models (Figure 2a,c) and good performance in the case of lag-zero linear
noncausal interactions (Figure 2e).
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Figure 1. The line plots show the mean (solid line) and the confidence interval of two standard
deviations about the mean (dashed lines) of CSampEn (a,c,e) and CUPI (b,d,f) as a function of c2.
The results of simulations generated via linear unidirectional causal (i.e., c1 = 0), linear bidirectional
causal (i.e., c1 = c2), and lag-zero linear noncausal models are shown in (a,b), (c,d), and (e,f),
respectively. The processes exhibit a dominant HF rhythm. The curves were built over 20 realizations
of X and Y.
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Figure 2. The line plots show the mean (solid line) and the confidence interval of two standard
deviations about the mean (dashed lines) of CSampEn (a,c,e) and CUPI (b,d,f) as a function of c2.
The results of simulations generated via linear unidirectional causal (i.e., c1 = 0), linear bidirectional
causal (i.e., c1 = c2), and lag-zero linear noncausal models are shown in (a,b), (c,d), and (e,f),
respectively. The processes exhibit a dominant LF rhythm. The curves were built over 20 realizations
of X and Y.
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Figure 3 shows the mean (solid line) and the confidence interval of two standard
deviations about the mean (dashed lines) of CSampEn (Figure 3a) and CUPI (Figure 3b)
computed over dynamics generated via unidirectionally-coupled identical logistic maps
while varying c2. The curves were built over 20 pairs of signals generated according to
different initial conditions. CUPI decreased to 0 with c2 and reached 0 when X and Y
synchronized (Figure 3b). Conversely, CSampEn remained stable with c2, and this result
was the consequence of the inability of CSampEn to detect the situation of uncoupling
when c2 was close to 0 (Figure 3a).
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5.2. Results on CB and HUT Protocols

Figure 4 shows CSampEn (Figure 4a) and CUPI (Figure 4b) computed in the CB
protocol. CSampEn decreased significantly during CB10 compared to SB, thus suggesting
that cardiorespiratory coupling increased at the slowest breathing rate. CUPI exhibited
a similar trend, but its variation compared to SB was significant during both CB10 and
CB15, thus making more evident the dependence of the cardiorespiratory coupling strength
on the respiratory rate during CB.
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Figure 5 shows CSampEn (Figure 5a) and CUPI (Figure 5b) computed in the HUT
protocol. The two markers exhibited striking differences with the experimental condi-
tion. Indeed, CUPI decreased significantly during HUT, thus suggesting an increase of
the cerebrovascular coupling strength, while CSampEn remained stable, thus suggesting
a certain stiffness in following modifications of the cerebrovascular coupling with the
experimental condition.
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Figure 5. The vertical box-and-whisker plots show CSampEn (a) and CUPI (b) as a function of the
experimental condition (i.e., REST and HUT). The height of the box represents the distance between
the first and third quartiles, with the median marked as a horizontal segment, and the whiskers
denote the 5th and 95th percentiles. The symbol § indicates p < 0.05 versus REST.

Figure 6 shows the linear markers of cardiorespiratory (Figure 6a) and cerebrovascular
(Figure 6b–d) coupling calculated in the CB and HUT protocols, respectively. CB augmented
K2

R,HP(HF) regardless of the rate of paced breathing (Figure 6a). K2
MAP,MCBv(VLF) and

K2
MAP,MCBv(LF) increased during HUT, and this result indicated an increased strength

of the cerebrovascular coupling (Figure 6b,c). Conversely, K2
MAP,MCBv(HF) did not vary

during HUT (Figure 6d).
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Figure 6. The vertical box-and-whisker plots show the K2 marker computed between R and HP
in the HF band in the CB protocol (a) and the K2 markers computed between MAP and MCBv in
the VLF (b), LF (c), and HF (d) bands in the HUT protocol. The height of the box represents the
distance between the first and third quartiles, with the median marked as a horizontal segment, and
the whiskers denote the 5th and 95th percentiles. The symbol § indicates p < 0.05 versus CB or REST.

6. Discussion

The main findings of this study can be summarized as follows: (i) CSampEn and
KNNCUP can quantify the modifications of coupling strength but with different abilities;
(ii) KNNCUP is more reliable than CSampEn when interactions occur according to a causal
structure, while performances are similar over a lag-zero linear noncausal model; (iii) in
healthy subjects KNNCUP is more powerful in identifying the changes in cardiorespira-
tory and cerebrovascular coupling strength in response to experimental challenges than
CSampEn and linear markers.
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6.1. Assessing the Coupling Strength between Dynamic Systems via CSampEn and KNNCUP

The degree of interaction between dynamic systems X and Y is assessed in the present
study via two model-free methods, namely CSampEn and KNNCUP.

CSampEn reconstructs the dynamics of X and Y in two separate embedding spaces
built using the technique of delayed components and assesses the strength of the re-
lationship between the embedding spaces by computing the negative logarithm of the
conditional probability that two patterns generated, respectively, by X and Y that are close
in the (m − 1)-dimensional embedding space remain close in the m-dimensional one. In
other words, according to the philosophy of state space correspondence methods, if two
patterns occupy the same region in the (m − 1)-dimensional embedding spaces, in presence
of a significant coupling between X and Y, they do not move apart when a new component
is added.

Therefore, although the model-free nature of CSampEn allows for the theoretical
description of nonlinear interactions, strong nonlinearities that imply links among different
regions of the phase space, such as those responsible for interactions among rhythms
at different frequencies, cannot be reliably described and the method seems to be more
suitable for describing relations occurring according to a 1:1 coupling ratio.

However, simulations provided in this study prove that, even in the presence of
a 1:1 coupling ratio typically occurring when two processes with the same dominant
oscillation are considered, CSampEn cannot detect the progressive modification of the
coupling strength when interactions between X and Y are generated by a linear causal
model. This conclusion held even in the case of a model simulating the interactions between
two nonlinear deterministic signals generated by logistic maps in a chaotic regime. This
limitation is related to the inability of CSampEn to interpret causality given that it is
a symmetric metric under the reversal of the role between X and Y. The most regrettable
feature of CSampEn is that it can suggest even the opposite trend with the coupling
strength as shown in Figures 1c and 2a,c. Solely in trivial simulations where two stochastic
processes interact in absence of a causal structure (i.e., immediate interactions), CSampEn
can detect the expected modifications with the coupling strength. The limited ability of
CSampEn confirms that the exploitation of a metric based on conditional probability does
not necessarily assure a causal approach [56].

KNNCUP assesses the relationship between X and Y using a completely different
logic, namely the cross-predictability of Y from patterns taken from the past history of X.
KNNCUP recalls model-based cross-conditional entropy even though the metric utilized
to assess irregularity of future behaviors of Y given the activity of X is different from the
evaluation of the logarithm of the variance of the innovation of Y given X [57]. Therefore,
the pattern is created over the activity of X and the ability of this pattern to set future
behaviors of Y is tested by measuring the ability of predicting y based on the knowledge of
x. In addition to having the possibility to describe nonlinear interactions among rhythms
at different frequencies according to the number of past samples of x utilized to predict
y, KNNCUP could account for the causal structure of the mechanisms generating the
interactions between X and Y. In addition to accounting for the directionality of the
interactions, KNNCUP optimizes the embedding dimension and coarse graining via the
search for the minimum over m [41,49] and the coverage of the embedding space with cells
of different size according to the k-nearest-neighbor strategy [58], respectively. The most
remarkable feature of KNNCUP is its robustness in indicating the expected modifications
of the coupling strength regardless of the model structure (i.e., causal or noncausal), type
of causal interactions (i.e., unidirectional or bidirectional), and signal feature (i.e., linear
stochastic or nonlinear deterministic).

In conclusion, KNNCUP should be preferred to CSampEn as a model-free technique
for the assessment of coupling strength even in the presence of interactions occurring at the
same frequency.
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6.2. Superior Ability of CUPI Compared to CSampEn in Evaluating Cardiorespiratory
Coupling Strength

CSampEn and CUPI exhibited similar results in the CB protocol. Indeed, both methods
detected an increase in cardiorespiratory coupling strength during CB10. This result is
not surprising given that the same conclusion was reached via cross-conditional entropy
based on a uniform quantization strategy for the computation of probabilities [42]. A linear
approach based on K2

R,HP( f ) was able to reach the same conclusion, but the trend with the
breathing rate was not evident. Therefore, given the dependence of the cardiorespiratory
coupling strength on the breathing rate, we recommend the use of a respiratory rate-
matched control group in applications to pathological subjects. At first sight, this conclusion
might be the consequence of the increase of the transfer function magnitude from R to
HP while slowing the respiratory rate [4,21,22] resulting from the shape of the sinus node
transfer function [59,60]. Conversely, since a rise in the transfer function magnitude is not
necessarily accompanied by an increase of the coupling strength, the observed finding
is more likely to be the consequence of a firmer pacing of the neural efferent activity
operated by the respiratory centers [27–30]. Given that the influence of R on HP is very
rapid [4,23,53] and produces dominant HP oscillations at the same frequency [22,23],
the difficulties of CSampEn in assessing coupling strength are less evident in the CB
protocol. However, CSampEn and CUPI are not fully equivalent. As a matter of fact,
CSampEn exhibited a slightly lower statistical power in detecting the dependence of the
cardiorespiratory coupling strength on the respiratory rate than CUPI. This finding suggests
that some difficulties of SampEn might be linked to the presence of slower components in
the responses of HP to R [5,61] and to the significant action in the reverse causal direction
(i.e., from HP to R) [3,26,53]. In addition, since the likelihood of the cross-frequency
coupling, for example, between the main respiratory rhythm and oscillations generated
by baroreflex control loop [62,63] increases while slowing the breathing rate, the resulting
impairment of the state space correspondence might have, more importantly, reduced the
effectiveness of CSampEn compared to that of CUPI.

6.3. Superior Ability of CUPI Compared to CSampEn in Evaluating Cerebrovascular
Coupling Strength

CUPI declined during HUT, thus indicating that postural challenge augmented the
cerebrovascular coupling strength. This result might be the consequence of the raise of
AP variability [64,65] that is not buffered with suitable changes to the vessel diameter and
drives changes of MCBv via the pressure-to-flow relationship [66,67]. This consideration
suggests a tendency toward a worsening of the dCA given that an increased association
between MAP and MCBv variations has been observed during fainting [68] and in subjects
with impaired dCA [9,69–71]. A linear approach based on K2

MAP,MCBv( f ) suggested an
increased cerebrovascular coupling strength as well. However, it is worth noting that the
observed increase is likely to occur in a physiological range that does not compromise
the dCA given that the quality of the MCBv response to a sustained step increase of
MAP was found to be preserved during HUT [72,73]. Regardless of the magnitude of the
changes, the robust assessment of the MCBv–MAP coupling strength is a critical issue.
Indeed, traditional markers of MCBv–MAP association based on K2

MAP,MCBv( f ) failed
to detect an increased cerebrovascular coupling strength in pathological subjects with
impaired dCA [74].

Remarkably, CSampEn did not decrease during HUT, thus stressing its limited ability
to quantify the modifications of the cerebrovascular coupling strength during orthostatic
challenge. This result might be the consequence of the causal structure of the dynamic
MCBv–MAP interactions occurring in a closed loop [45,54,55,75] according to the pressure-
to-flow link [76] and the Cushing-like pathway [77] mediated by the activity of the mechano-
receptors of the brainstem [78] and fully operative under physiological modifications of
intracranial pressure [79].
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7. Conclusions

This study proves the different abilities of CSampEn and KNNCUP metrics in assessing
the coupling strength between two time series and clarifies the conditions under which their
behaviors diverge. In addition to the trivial disruption of the state space correspondence
resulting from nonlinear interactions occurring according to the n:m coupling ratio, with
m and n different from 1, even interactions occurring according to a causal structure are
sufficient to limit the performance of CSampEn. We recommend the avoidance of the use
of CSampEn to assess cardiorespiratory and cerebrovascular coupling from spontaneous
variability, because CSampEn might be inadequate to describe the complex causal nature
of these relationships [4–6,42,44,45,55,62,75,80]. Conversely, KNNCUP assures a more
reliable nonlinear model-free framework to quantify cardiorespiratory and cerebrovascular
variability interactions because its performances are less dependent on the structure of the
underlying mechanism generating the dynamics, thus allowing the detection of a trend
toward an increase of the cardiorespiratory coupling strength while slowing the breathing
rate and the raise of the cerebrovascular coupling strength during the sympathetic activation
and vagal withdrawal induced by an orthostatic challenge.
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