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Abstract— Objective: Respiration disturbs cardiovascular and 

cerebrovascular controls but its role is not fully elucidated. 
Methods: Respiration can be classified as a confounder if its 
observation reduces the strength of the causal relationship from 
source to target. Respiration is a suppressor if the opposite 
situation holds. We prove that a confounding/suppression (C/S) 
test can be accomplished by evaluating the sign of net 
redundancy/synergy balance in the predictability framework 
based on multivariate autoregressive modelling. In addition, we 
suggest that, under the hypothesis of Gaussian processes, the C/S 
test can be given in the transfer entropy decomposition 
framework as well. Experimental protocols: We applied the C/S 
test to variability series of respiratory movements, heart period, 
systolic arterial pressure, mean arterial pressure, and mean 
cerebral blood flow recorded in 17 pathological individuals (age: 
64±8 yrs; 17 males) before and after induction of propofol-based 
general anesthesia prior to coronary artery bypass grafting, and 
in 13 healthy subjects (age: 27±8 yrs; 5 males) at rest in supine 
position and during head-up tilt with a table inclination of 60°. 
Results: Respiration behaved systematically as a confounder for 
cardiovascular and cerebrovascular controls. In addition, its role 
was affected by propofol-based general anesthesia but not by a 
postural stimulus of limited intensity. Conclusion: The C/S test 
can be fruitfully exploited to categorize the role of respiration 
over causal variability interactions. Significance: The application 
of the C/S test could favor the comprehension of the role of 
respiration in cardiovascular and cerebrovascular regulations. 
 

Index Terms—Multivariate autoregressive model, redundancy, 
synergy, confounding, suppression, predictability decomposition, 
transfer entropy, cerebrovascular autoregulation, heart rate 
variability, general anesthesia, head-up tilt, autonomic nervous 
system, cardiac neural control.  

 
This work was supported in part by the Piano Sostegno della Ricerca 2020, 

University of Milan, Milan, Italy, to A.P. and by Ricerca Corrente from the 
Italian Ministry of Health to Policlinico San Donato. 

*A. Porta is with Department of Biomedical Sciences for Health, 
University of Milan, Milan, Italy and Department of Cardiothoracic, Vascular 
Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato 
Milanese, Milan, Italy (correspondence email: alberto.porta@unimi.it). F. 
Gelpi and B. Cairo are with Department of Biomedical Sciences for Health, 
University of Milan, Milan, Italy. V. Bari, and M. Ranucci are with 
Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, 
IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy. B. De 
Maria is with IRCCS Istituti Clinici Scientifici Maugeri, Milan, Italy. D. 
Tonon and G. Rossato are with Department of Neurology, IRCCS Sacro 
Cuore Don Calabria Hospital, Negrar, Verona, Italy. L. Faes is with 
Department of Engineering, University of Palermo, Palermo, Italy. 

 

I. INTRODUCTION 

HE behavior of physiological systems, such as 
cardiovascular (CV) and cerebrovascular (CBV) systems, 

is the result of their complex intrinsic functioning and of the 
interactions with other systems supported by the neural 
pathways and the network of vessels [1]. The behavior of a 
given system, taken as the target, is usually described as a 
stochastic process modeling the dependence of the current 
state on its own past states, usually referred to as self-
dependency, on past states of a system taken as a source, 
usually referred to as cross-dependency, and on past states of 
the additional systems, usually referred to as conditioning 
systems, blurring the relationship between source and target 
[2]-[6]. In the context of the description of the dynamic 
interactions it is important to typify the role of conditioning 
systems on the relationship between source and target. This 
categorization is useful to better understand the impact of the 
conditioning systems in shaping the interactions between 
source and target and in modulating the variety of target 
behaviors that might be observed in response to the same 
dynamics of the source. 

The aim of this study is to propose a method to categorize 
the role of conditioning systems over the relationship between 
source and target. The approach allows the separation of 
confounding (C) and suppression (S) effects [7] via a simple 
C/S test. The C/S test exploits the net redundancy/synergy 
balance between source and conditioning systems in shaping 
the target dynamics [8]-[11]. It is shown that the classification 
of more peculiar causal schemes, corresponding to very 
common situations such as uncorrelated sources (US), 
common disturbance (CD) and mediation (M), necessitates the 
introduction of additional a priori physiological knowledge. 
The C/S test is applied to clarify the role of the respiratory 
system in modulating CV and CBV variability interactions on 
two experimental protocols featuring the contemporaneous 
recordings of the beat-to-beat variability series of heart period 
(HP), mean and systolic arterial pressure (MAP and SAP), 
mean cerebral blood flow (MCBF) and respiration (R) in 
patients undergoing general anesthesia with propofol and 
remifentanil under mechanical ventilation [12],[13], and in 
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healthy subjects during postural challenge under spontaneous 
breathing [14]-[15]. The two protocols were considered 
because both general anesthesia and postural challenge 
modulate the state of the autonomic nervous system that has a 
profound impact on HP-SAP and MCBF-MAP variability 
interactions [12]-[15]. CV and CBV regulations have been 
studied extensively via both linear and nonlinear model-based 
techniques [16]-[22] but the impact of R on them remains 
poorly assessed and largely underestimated. 

II. METHODS 

A. Generalities and Definitions 

Let us consider an ensemble of systems composed by a 
source, a target and a conditioning system denoted as X, Y and 
Z respectively. Their dynamic behavior is given by the 
processes X={ snX , , n=1,…,N; sϵS}, Y={ snY , , n=1,…,N; sϵS} 

and Z={ snZ , , n=1,…,N; sϵS} respectively, where n is the time 

index, N is the overall time horizon of the process, s is the 
outcome of a random experiment and S is the collection of all 
possible outcomes. Assigned the outcome s of the random 
experiment to s , x={ ssnn Xx  , , n=1,…,N}, y={ ssnn Yy  , , 

n=1,…,N} and z={ ssnn Zz  , , n=1,…,N} are realizations of 

the processes X, Y and Z corresponding to the time series 
recorded during an experimental session. Assigned the time 
index n to n , snnn XX , , snnn YY ,  and snnn ZZ ,  

represent the states of the systems X, Y and Z respectively at 
the time n= n . Assigned the time index n to n  and the 

outcome s of the random experiment to s , ssnnn Xx  , , 

ssnnn Yy  ,  and ssnnn Zz  ,  are samples of the realization 

x, y and z at time n . Let us suppose that X, Y and Z are 
ergodic processes such a way their statistical properties are 
invariant under time shift and can be estimated via temporal 
averaging instead of ensemble averaging. Being ergodic, X, Y 
and Z are stationary as well. Let us also hypothesize that X, Y 
and Z are Gaussian processes with zero mean and unit 
variance obtained by subtracting the mean and by dividing the 
deviation of each value from the mean by the standard 
deviation. 

B. Description of the Effect of the Conditioning System on the 
Dynamic Interactions between Source and Target 

Let us consider the universe of knowledge Ω formed by the 
dynamic behaviors of the source, target and conditioning 
systems, i.e. ΩXYZ = {X,Y,Z}, and three restricted universes 
built by considering separately X and Z together with Y, i.e. 
ΩXY = {X,Y} = ΩXYZ\{Z} and ΩYZ = {Y,Z} = ΩXYZ\{X}, and the 
target alone, i.e. ΩY = {Y} = ΩXYZ\{X,Z}. In ΩXYZ the effect of 
the conditioning system on the dynamic interactions between 
the source and the target is described as an autoregressive 
(AR) process over Y with double exogenous (X) inputs, 
namely X and Z, (ARYXXZ) [5], [23], [24] as 

XYZ
nn

XYZ
n

XYZ
n

XYZ
n WZcXbYaY   ,  (1) 

where p
XYZ aaa  1 , p

XYZ bbb  1  and p
XYZ ccc  1  

are the vectors of constant coefficients with dimension 1×p, 
T

1 pnnn YYY 
  , 

T
1

  pnnn XX
YXX  and 

T
1

  pnnn ZZ
ZZZ  are the vectors of the past states of 

Y, X and Z with dimension p×1, XYZ
nW  is the current state of 

the zero mean Gaussian white noise XYZW  with variance 
2
XYZλ , τX and τY represent the latencies of the actions of X and 

Z on Y, and p is the model order. Analogously, we describe 
the dynamic dependence of Y on X in ΩXY as an AR process 
over Y with single X input, namely X, (ARYXX) as  

XY
nn

XY
n

XY
n WXbYaY   ,  (2) 

the dynamic influence of Z on Y in ΩYZ as an AR process over 
Y with single Z input, namely Z, (ARYXZ) as  

YZ
nn

YZ
n

YZ
n WZcYaY   ,  (3) 

and the dynamics of Y in ΩY as an AR process over Y (ARY) as  
Y
nn

Y
n WYaY   ,  (4) 

with symbols having the same meaning as in (1) and XYW , 
YZW  and YW  having variances 2

XYλ , 2
YZλ  and 2

Yλ  

respectively.  

C. Definition of C and S and their Link with M and CD 

When considering the role of Z over a causal relationship 
from X to Y, namely X→Y, we can classify two main 
typologies: C and S. In the case of C the enlargement of ΩXY 
with the inclusion of Z reduces the predictability of Y on X. 
This situation implies that the portion of the Y variance 
explained by X in ΩXYZ is smaller than that in ΩXY. Conversely, 
in the case of S, the opposite situation is observed with the 
portion of the Y variance explained by X in ΩXYZ that is larger 
than the one in ΩXY. When examining the role of Z over the 
X→Y link, C and S should be considered the main typologies 
because this classification holds regardless of the type of the 
causal interactions linking X and Y to Z. Figure 1 summarizes 
all the possibilities of causal schemes concerning the role of Z 
on X→Y. These possibilities comprise all possible types of 
interaction of Z over X and Y, namely unidirectional (one 
arrow), bidirectional (two arrows) and no link (dotted line), 
thus forming the most general configuration (Fig.1a). The 

 
Fig.1. Sketch of all possible causal interferences of Z over the casual link from 
X to Y (a) and its reduction by excluding situations of bidirectional 
interactions and lack of directed influences of Z on Y (b). 
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general configuration is restricted by excluding bidirectional 
influences between Z and X and between Z and Y. Also 
situations featuring no directed action from Z to Y are 
excluded given that Z is considered to be a source disturbing 
Y, thus leading to the restricted configuration summarized in 
Fig.1b. The schemes shown in Fig.1b are unfolded in Fig.2. 
The common denominator of the three patterns is the causal 
links from X to Y and from Z to Y. In the scheme reported in 
Fig.2a Z exclusively acts on Y as no link between X and Z is 
present, thus leading to an uncorrelation between the two 
sources X and Z. This configuration is labelled as uncorrelated 
sources (US). The scheme sketching the joint actions of Z on 
both X and Y is given in Fig.2b. This configuration is referred 
to as common driving (CD). In the scheme reported in Fig.2c 
Z acts as a mediator between X and Y and this configuration is 
labelled as mediation (M). 

D. Toward a C/S test 

In this study we exploited the predictability decomposition 
framework [9], [10] to classify the influence of Z on the causal 
relationship from X to Y. In this framework causal 
predictability (CP) from X to Y is defined as  

22CP XYYYX σσ  ,   (5) 

where σ2
Y and σ2

XY represent the variance of the prediction 
error of the model ARY and ARYXX being an estimate of the 

variances 2
Yλ  and 2

XYλ  of YW  and XYW  respectively. 

YXCP  represents the decrement of unpredictability of Y 

when X is observed, namely the fraction of the variance of Y 
genuinely explained by X in ΩXY. 

In the predictability decomposition framework [10] CP 
from X to Y given Z is defined as  

22CP YXZYZZYX σσ  ,   (6) 

where σ2
YZ and σ2

XYZ represent the variance of the prediction 
error of the model ARYXZ and ARYXXZ being an estimate of 

the variances 2
YZλ  and 2

XYZλ  of YZW  and XYZW  

respectively. ZYXCP  represents the decrement of 

unpredictability of Y when X is observed above and beyond 
the contribution of Z, namely the fraction of the variance of Y 
genuinely explained by X in ΩXYZ. According to Sect.IIC Z is a 
confounder for X→Y if  

ZYXYX  CPCP ,  (7) 

because the inclusion of Z in ΩXY reduces the ability of 
predicting Y when X is observed given that Z is capable to 
explain a sizable portion of the variance of Y. Conversely, if  

ZYXYX  CPCP ,  (8) 

Z is a suppressor because the enlargement of ΩXY with Z 
increases the ability of predicting Y via X. Given this 
observation a test for detecting C/S is simply based on the 
assessment of the sign of the difference ZYXYX  CPCP . 

E. Testing C/S via Net Redundancy/Synergy Balance 

In the predictability decomposition framework [10] the 
interactive predictability (IP) of X and Z to Y is defined as 

YZXYZYXZXY   ,CPCPCP),;IP( .  (9) 

),;IP( ZXY  has the notable property of assessing the 

difference between redundancy and synergy of X and Z to Y, 
namely the so-called net redundancy/synergy balance [9], 
[10], [25], [26]. Indeed, in agreement with the theoretical 
definition of redundancy when 0),;IP( ZXY  the sum of the 

ability of X and Z in predicting Y, when X and Z are 
individually considered, is greater than the ability of X and Z 
in predicting Y when X and Z are considered together, thus 
indicating a prevalent redundancy of X and Z to Y. Conversely, 
in agreement with the theoretical definition of synergy, the 
opposite situation, namely 0),;IP( ZXY , indicates a 

prevalent synergy. Given that ),;IP( ZXY  can be positive or 

negative, ),;IP( ZXY  is valuable to assess the net 

redundancy/synergy balance, while it is useless to assess 
redundancy and synergy in isolation without introducing 
additional relations [2], [8].  

Since the amount of Y variance that can be explained using 
the past of X and Z above and beyond the portion that can be 
derived from the past of Y can be calculated as the decrement 
of unpredictability when Y is described in ΩXYZ compared to 
ΩY [10] as 

22
,CP YXZYYZX σσ  ,  (10) 

where σ2
YXZ represents the variance of the prediction error of 

the regression of Y on its own past and the past of X and Z, the 
application of the (5), (6) and (10) leads one to  

ZYXYXZXY   CPCP),;IP( ,  (11) 

thus testing C/S via the assessment of the sign of ),;IP( ZXY . 

By following the duality between predictability [9], [10] and 
transfer entropy (TE) [4], [8] [10], [11], [27]-[29] 
decomposition frameworks holding for Gaussian random 
variables [3], it can be easily proved that the C/S test can be 
carried out by assessing the sign of interactive TE (ITE) 
computed as  

22

22
log5.0),;ITE(

YZXY

YXZY

σσ

σσ
ZXY




 ,  (12) 

where log is the natural logarithm [10]. This relation follows 
from the definition ITE(Y;X,Z)=TEX→Y –TEX→Y|Z, where the 
TEs are defined similarly to (5) and (6) in terms of entropies 
as TEX→Y=HY–HXY and TEX→Y|Z=HYZ–HYXZ, and for Gaussian 
variables each entropy term H is a function of the 
corresponding residual variance σ2, i.e. H=0.5∙log(2e σ2) [3]. 

 
Fig.2. Sketch of all possible causal interferences of Z over the casual link from 
X to Y in the case of the restricted configuration reported in Fig.1b: US (a), 
CD (b) and M (c). 

Authorized licensed use limited to: Univ degli Studi di Palermo - Univ of Palermo. Downloaded on March 26,2022 at 18:49:45 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2021.3135313, IEEE
Transactions on Biomedical Engineering

TBME-01231-2021-R3 
 

 

4

F. Generalization of the C/S Test to Vector Variables 

Let us imagine to evaluate the role of Z=|Z1, … ,Zk|, where 
Z is a vector variable of dimension 1×k, collecting k stochastic 
input processes over the causal relationship X→Y. The quantity 

ZYXCP  can be easily generalized by considering vector 

regression models computed in ΩXYZ={X,Y,Z} and in 
ΩXY=ΩXYZ\{Z} respectively. The difference 

ZYXYX  CPCP  holds the interpretation provided at the 

end of Sect.IID because a positive difference indicates that the 
set of Zk processes reduces the predictive ability of X about the 
future evolution of Y, while a negative difference indicated the 
opposite situation. Since (9) holds when Z is a vector variable 
Z, leading to the computation of ),;IP( ZXY , the proposed 

procedure for testing C/S is still valid. 

III. SIMULATIONS AND SURROGATE DATA GENERATION 

A. Simulations 

Net redundancy/synergy was computed by simulating US, 
CD and M schemes according to the model  

X
nnnn WZdXgX   11     

Y
nnnnn WZcXbYaY   211    (13) 

Z
nnnn WYfXeZ   11  ,   

where X
nW , Y

nW , and Z
nW  are current states of zero mean 

and unit variance Gaussian noises XW , YW  and ZW , 
respectively. US, CD and M schemes were simulated while 
varying the strength b of the causal action from X to Y from  
‒0.5 to +0.5 in steps of 0.05 and with a=0.5‒2·|b| and g=0.5. 
US was simulated by setting c≠0.0, d=0.0, e=0.0, and f=0.0. 
To better understand the consequence of an unbalance 
between the strength and phase of the actions of Z and X on Y, 
c was set to ‒1.0, ‒0.5, +0.5 and +1.0. CD was simulated by 
setting c≠0.0, d≠0.0, e=0.0 and f=0.0. To better appreciate the 
effect of altering the phase of influences of Z over X and Y, all 
the possible combinations with c=±0.3 and d=±1.0 were 
considered. M was simulated by setting c≠0.0, d=0.0, e≠0.0 
and f=0.0. To assess the consequence of altering the sign of 
the M pathway compared to that from X to Y, all the possible 
combinations with c=±1.0 and e=±1.0 were considered. 
Twenty realizations of X, Y and Z of 256 samples were 
generated by considering different realizations of Gaussian 
white noises obtained by varying their seed. Results were 
reported as function of b as median and confidence interval 
derived from 2.5th and 97.5th percentiles. The net 
redundancy/synergy was computed using (9) and the true 
values of the parameters, starting from the different 
realizations of the process defined in (13). 

B. Surrogate Data 

Over experimental series the significance of the net 
redundancy/synergy balance was tested against a situation of 
full uncoupling among all the systems that theoretically would 
lead to 0.0),;IP( ZXY . In order to destroy any causal 

interaction while preserving as much as possible the other 
statistical properties of X, Y and Z such as distribution, power 
spectrum and self-entropy of all considered processes, 
surrogate data are generated according to a time shifting 
procedure leading to values at the end of the sequence 
wrapped to their onset [30], [31]. Realizations of X and Z were 
time shifted according to a randomly chosen delay much 
larger than the maximal order of the model (i.e. 40 cardiac 
beats). Attention was paid that the absolute value between the 
two delays was longer than 40 cardiac beats as well. The 
original realization of Y was kept untouched. For each original 
triplet we generated one triplet of surrogate series. ),;IP( ZXY  

was computed over the set of surrogates and the 2.5th and 
97.5th percentiles of the distribution of ),;IP( ZXY  were 

extracted in each experimental condition. These critical values 
were labeled IPS,2.5 and IPS,97.5 respectively. If ),;IP( ZXY  

computed over the original series in a given subject in an 
assigned experimental condition was found below IPS,2.5 or 
above IPS,97.5, the role of Z over the causal link from X to Y 
could be identified. More specifically, if ),;IP( ZXY  was 

below IPS,2.5, Z was a S, while Z was a C if ),;IP( ZXY  was 

above IPS,97.5. The percentage of subjects with Z classified as 
S, or C, was monitored in each experimental condition and 
indicated as S% and C%.  

IV. EXPERIMENTAL PROTOCOLS AND DATA ANALYSIS 

The role played by R on the CV and CBV interactions was 
assessed in two different experimental protocols carried out, 
respectively, in a group of pathological individuals undergoing 
recordings before (PRE) and after (POST) general anesthesia 
induction with propofol and remifentanil [12], [13], and in a 
group of healthy subjects undergoing recordings at rest in 
supine position (REST) and during postural challenge induced 
by head-up tilt (HUT) [14], [15]. 

A. PRE-POST Experimental Protocol 

Data were collected in patients scheduled for coronary 
artery bypass grafting at the Department of Cardiothoracic, 
Vascular Anesthesia and Intensive Care of IRCCS Policlinico 
San Donato, San Donato Milanese, Milan, Italy. Details about 
the PRE-POST experimental protocol can be found in [12], 
[13]. Briefly, we studied 17 pathological subjects (age: 64±8 
yrs, 17 males). The inclusion criteria, ethical committee 
approval from San Raffaele Hospital, Milan, Italy (approval 
number: 40/int/2016), agreement with the principles of the 
Declaration of Helsinki and informed consent process were 
described in [12], [13]. The subjects received first 
premedications such as intramuscular administration of 
atropine (0.5 mg) and fentanyl (100 μg). General intravenous 
anesthesia was induced with a bolus of propofol of 1.5  
mg·kg-1 and maintained with a propofol dose of 3 mg·kg-1·h-1 
and remifentanil at a rate from 0.05 to 0.5 μg·kg-1·min-1 with a 
mean rate 0.32 μg·kg-1·min-1. Electrocardiogram (ECG) and 
arterial pressure (AP), invasively derived from a catheter 
inserted into the radial artery, were recorded from the patient’s 
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monitor and acquired with an analog-to-digital board 
(National Instruments, Austin, TX, USA) connected to a 
laptop synchronously with cerebral blood flow (CBF) velocity 
measured from the middle cerebral artery via a transcranial 
Doppler ultrasound device (Multi-Dop X, DWL, San Juan 
Capistrano, CA, USA). Signals were sampled at a frequency 
of 1 kHz. Signals were recorded for 10 min in PRE and POST 
when the target plasma concentration of propofol was 
expected to be around 3 μg·kg-1 based on the pharmacokinetic 
properties of the drug. POST session was recorded just before 
opening the chest. Patients spontaneously breathed during 
PRE and were mechanically ventilated during POST under 
volume-controlled mode at a rate from 12 to 16 breaths·min-1.  

B. REST-HUT Experimental Protocol 

Data were collected at the Neurology Division of Sacro 
Cuore Hospital, Negrar, Italy. Details of the REST-HUT 
experimental protocol can be found in [14], [15]. The 

inclusion criteria, ethical committee approval from Sacro 
Cuore Hospital, Negrar, Italy (approval number: 101/2010), 
agreement with the principles of the Declaration of Helsinki 
and informed consent process were described in [14], [15].  

Briefly, we considered 13 healthy control subjects (age: 27 
± 8 yrs; 5 males) with no history of syncope in the previous 2 
years. Their healthy status was assessed via physical 
examination and full neurological assessment. Subjects were 
instructed to avoid caffeinated and alcoholic beverages for 24h 
before the study. Experiments took place in the morning in a 
temperature-controlled room. Subjects were instrumented to 
continuously monitor the ECG (lead II), AP via a volume 
clamp device from the middle finger of the right hand 
(Finapres Medical Systems, Enschede, The Netherlands) and 
thoracic movements through a piezoelectric belt (Marazza, 
Monza, Italy). The CBF velocity was measured from the 
middle cerebral artery through a transcranial Doppler device 
(Multi-Dop T, DWL, San Juan Capistrano, CA, USA).  

 
Fig.3. The line plots show IP(Y;X,Z) computed over simulated data in US 
configuration as a function of the strength b of the causal relationship from X 
to Y. Results are reported according to c=‒1.0 (a), c=‒0.5 (b), c=+0.5 (c), and 

c=+1.0 (d). The solid lines are relevant to the 2.5th and 97.5th percentiles, 
while the dashed one to the median computed over the entire set of 
simulations. The dotted line denotes IP(Y;X,Z)=0.0.  

 
Fig.4. The line plots show IP(Y;X,Z) computed over simulated data in CD 
configuration as a function of the strength b of the causal relationship from X 
to Y. Results are reported according to d=‒1.0 and c=‒0.3 (a), d=‒1.0 and 

c=+0.3 (b), d=+1.0 and c=‒0.3 (c), and d=+1.0 and c=+0.3 (d). The solid 
lines are relevant to the 2.5th and 97.5th percentiles, while the dashed one to the 
median computed over the entire set of simulations. The dotted line denotes 
IP(Y;X,Z)=0.0.  

 
Fig.6. The line plots show ITE(Y;X,Z) computed over simulated data in M 
configuration as a function of the strength b of the causal relationship from X 
to Y. Results are reported according to e=‒1.0 and c=‒1.0 (a), e=‒1.0 and 

c=+1.0 (b), e=+1.0 and c=‒1.0 (c), and e=+1.0 and c=+1.0 (d). The solid 
lines are relevant to the 2.5th and 97.5th percentiles, while the dashed one to the 
median computed over the entire set of simulations. The dotted line denotes 
ITE(Y;X,Z)=0.0.  

 
Fig.5. The line plots show IP(Y;X,Z) computed over simulated data in M 
configuration as a function of the strength b of the causal relationship from X 
to Y. Results are reported according to e=‒1.0 and c=‒1.0 (a), e=‒1.0 and 

c=+1.0 (b), e=+1.0 and c=‒1.0 (c), and e=+1.0 and c=+1.0 (d). The solid 
lines are relevant to the 2.5th and 97.5th percentiles, while the dashed one to the 
median computed over the entire set of simulations. The dotted line denotes 
IP(Y;X,Z)=0.0.  
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The signals were acquired synchronously at a sampling rate 
of 1 kHz. After having instrumented the subject, a period of 5 
minutes was left for stabilization of the physiological 
variables. The subjects underwent 10 minutes of recording at 
REST and during successive HUT with tilt table inclination of 
60°. No subjects exhibited signs of presyncope during HUT.  

C. Beat-to-beat Series Extraction 

ECG, AP and CBF were low-pass filtered with cut-off 
frequencies of 250, 50 and 10 Hz respectively. HP was 
computed from the ECG as the time interval between two 
consecutive R-wave peaks. The kth SAP was defined as the 
maximum AP value within the kth HP. Diastolic AP (DAP) 
was detected as the minimum AP value after the kth SAP. The 
kth MAP was computed as the ratio of the definite integral of 
AP between the (k‒1)th and kth DAP occurrences to the 
interdiastolic interval. The same procedure was applied to 
CBF velocity to compute the kth MCBF velocity and the 
fiducial points for the computation of the definite integral 
were the same as for the calculation of MAP [14], [15]. In the 
PRE-POST protocol the R series was obtained from the 
respiratory-related amplitude modulation of the ECG as the 
amplitude of the first R-wave delimiting the kth HP. In the 
REST-HUT protocol the R series was obtained by sampling 
thoracic movement signal at the first R-wave delimiting the 
kth HP. Missing values owing to overlooked detections of the 
R-wave peak were manually inserted. Misdetections linked to 
the occasional spikes of noise on the ECG trace were deleted. 
If an HP could be measured, the associated SAP, MAP, R and 
MCBF values were always extracted. The effect of ectopic 

beats or isolated arrhythmic events was mitigated via linear 
interpolation between the closest values unaffected by 
arrhythmic beat. Corrections did not exceed 5% of the total 
sequence length. In order to study short-term regulatory 
mechanisms, we selected sequences of 250 consecutive 
synchronous HP, MAP, SAP, R and MCBF values [32] at 
random positions within experimental sessions. Stationarity 
test was applied to avoid analysis over sequences with 
unstable mean and variance [33]. Time domain analysis was 
reported in [13] and in [34] for the PRE-POST and REST-
HUT protocols respectively.  

D. Model Identification Procedure over Variability Series 

The coefficients of the models were identified via 
traditional least squares approach and Cholesky 
decomposition method [5], [23], [24]. The delays from SAP to 
HP, from HP to SAP, from MAP to MCBF, from MCBF to 
MAP was set to 0, 1, 2 and 0 beats [12], [13]. The model order 
was optimized in the range from 4 to 16 according to the 
Akaike figure of merit for multivariate processes over the 
most complex model structure (i.e. the model identified in 
ΩXYZ). The optimal model order was denoted with pO and 
reported in Appendix. The model coefficients were estimated 
again in ΩXY, ΩYZ and ΩY while keeping the model order 
optimized in ΩXYZ. The goodness of fit ρ was computed as the 
fraction of variance explained by the optimal model and 
reported in Appendix. ρ ranges from 0 to 1 where 0 and 1 
indicate null and perfect fitting respectively. 

E. Statistical Analysis 

 
Fig.8. The grouped bar graphs show IP(MCBF;MAP,R) (a) and 
IP(MAP;MCBF,R) (b) as a function of the experimental condition in the PRE-
POST protocol. Markers are computed over the original (solid black bars) and 
surrogate (solid white bars) data. The symbol * indicates a significant 
difference across experimental conditions within the same type of series, 
while the symbol # denotes a significant difference between original series 
and surrogates within the same experimental condition.  

 
Fig.7. The grouped bar graphs show IP(HP;SAP,R) (a) and IP(SAP;HP,R) (b) 
as a function of the experimental condition in the PRE-POST protocol. 
Markers are computed over the original (solid black bars) and surrogate (solid 
white bars) data. The symbol * indicates a significant difference across 
experimental conditions within the same type of series, while the symbol # 
denotes a significant difference between original series and surrogates within 
the same experimental condition. 

 
Fig.9. The grouped bar graphs show IP(HP;SAP,R) (a) and IP(SAP;HP,R) (b) 
as a function of the experimental condition in the REST-HUT protocol. 
Markers are computed over the original (solid black bars) and surrogate (solid 
white bars) data. The symbol # denotes a significant difference between 
original series and surrogates within the same experimental condition. 

 
Fig.10. The grouped bar graphs show IP(MCBF;MAP,R) (a) and 
IP(MAP;MCBF,R) (b) as a function of the experimental condition in the 
REST-HUT protocol. Markers are computed over the original (solid black 
bars) and surrogate (solid white bars) data. The symbol # denotes a significant 
difference between original series and surrogates within the same 
experimental condition.  
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Two-way repeated measures analysis of variance (two 
factor repetition, Holm-Sidak test for multiple comparison) 
was utilized to assess the significance of the differences 
between original and surrogate series within the same 
experimental condition and between experimental conditions 
within the same type of data (i.e. original or surrogate series). 
Experimental data are reported as mean ± standard deviation. 
Statistical analysis was performed with a commercial 
statistical software (Sigmaplot v.14.0, Systat Software, San 
Jose, CA, USA). A value of type I error probability p<0.05 
was always deemed as significant. 

V. RESULTS 

A. Results over Simulations 

Figure 3 shows the IP(Y;X,Z) monitored as a function of the 
strength b of the causal relationship from X to Y in the case of 
the US scheme. Results are given with c equal to ‒1.0 
(Fig.3a), ‒0.5 (Fig.3b), +0.5 (Fig.3c) and +1.0 (Fig.3d). The 
dashed line is relevant to the median of IP(Y;X,Z) computed 
over the entire set of simulations, while the solid lines to 2.5th 
and 97.5th percentiles. Dotted line indicates IP(Y;X,Z)=0.0. As 
expected, the median value of IP(Y;X,Z) lay around 0. 
Dispersion tended to grow with the absolute values of b and c.  

Figure 4 has the same structure as Fig.3 but shows the 
IP(Y;X,Z) in the case of the CD scheme. Results are given with 
d and c equal to ‒1.0 and ‒0.3 (Fig.4a), to ‒1.0 and +0.3 
(Fig.4b), to +1.0 and ‒0.3 (Fig.4c) and to +1.0 and +0.3 
(Fig.4d). IP(Y;X,Z) was linearly related to modifications of b 
and the transition from negative to positive IP(Y;X,Z) values or 
vice versa occurred at b=0. Dispersion of IP(Y;X,Z) was 
limited and was weakly influenced by the absolute value of b. 

Figure 5 has the same structure as Fig.3 but shows the 
IP(Y;X,Z) in the case of the M scheme. Results are given with 
e and c equal to ‒1.0 and ‒1.0 (Fig.5a), to ‒1.0 and +1.0 
(Fig.5b), to +1.0 and ‒1.0 (Fig.5c) and to +1.0 and +1.0 
(Fig.5d). Like in the CD configuration, in the M scheme 
IP(Y;X,Z) was linearly related to b and the straight line 
intersected the x-axis in correspondence to b=0. Dispersion of 
IP(Y;X,Z) increased remarkably with the absolute value of b. 

Similarly to the Fig.5, the Fig.6 shows the results relevant 
to the M scheme. Net redundancy/synergy balance was 
computed in the TE decomposition framework via the 
ITE(Y;X,Z). The simultaneous monitoring of IP(Y;X,Z) in 
Fig.5 and ITE(Y;X,Z) in Fig.6 over the same simulation is 
intended to favor the comprehension of subtle differences 
among these net redundancy/synergy balance metrics. The 
logarithm transformation was responsible for the nonlinear 
trend visible in all the panels (Figs.6a,b,c,d) as well as for the 
greater departures of ITE(Y;X,Z) from x-axis when the values 
of ITE(Y;X,Z) were negative compared to positive ones. 

B. Results over Experimental Data 

The group bar graphs of Fig.7 show IP(HP;SAP,R) (Fig.7a) 
and IP(SAP;HP,R) (Fig.7b) in the PRE-POST protocol. 
Results are given over the original series (solid black bars) and 
surrogates (solid white bars). Over the original series general 

anesthesia increased IP(HP;SAP,R), while no effect was 
observed over surrogates (Fig.7a). Regardless of the 
experimental condition IP(HP;SAP,R) was significantly 
reduced over surrogates compared to the original data 
(Fig.7a). General anesthesia reduced IP(SAP;HP,R) over the 
original data but left unmodified IP(SAP;HP,R) over the 
surrogates (Fig.7b). IP(SAP;HP,R) computed over original and 
surrogate data was different in PRE but not in POST condition 
(Fig.7b). R had a C effect for the causal link from SAP to HP 
in 53% and 82% of the subjects in PRE and POST 
respectively, while R had a S influence in 6% and 0%. R was a 
confounder for the causal link from HP to SAP in 76% and 
47% of the subjects in PRE and POST respectively, while R 
was a suppressor in 0% and 0%. 

Figure 8 has the same structure as Fig.7 but it shows 
IP(MCBF;MAP,R) (Fig.8a) and IP(MAP;MCBF,R) (Fig.8b). 
Over the original series IP(MCBF;MAP,R) increased during 
POST, while the effect of general anesthesia was not visible 
over surrogates (Fig.8a). IP(MCBF;MAP,R) was significantly 
reduced in surrogates solely in POST session (Fig.8a). Over 
the original data IP(MAP;MCBF,R) was smaller in POST than 
in PRE but no PRE-POST changes were observed over the 
surrogates (Fig.8b). Surrogate data exhibited smaller 
IP(MAP;MCBF,R) values compared to the original series 
exclusively in PRE session (Fig.8b). R had a C effect for the 
causal link from MAP to MCBF in 41% and 76% of the 
subjects in PRE and POST respectively, while R had a S 
influence in 12% and 0%. R was a confounder for the reverse 
causal pathway (i.e. MCBF to MAP) in 71% and 71% of the 
subjects in PRE and POST respectively, while R was a 
suppressor in 0% and 0%. 

The group bar graphs of Fig.9 show IP(HP;SAP,R) (Fig.9a) 
and IP(SAP;HP,R) (Fig.9b) in the REST-HUT protocol. 
Results are given over the original series (solid black bars) and 
surrogates (solid white bars). Regardless of the type of data 
(i.e. original or surrogate series) postural stimulus left 
unmodified IP(HP;SAP,R) (Fig.9a). The same conclusion held 
over IP(SAP;HP,R) (Fig.9b). Regardless of the experimental 
condition (i.e. REST or HUT) and type of monitored variable 
[i.e. IP(HP;SAP,R) or IP(SAP;HP,R)], IP was larger over the 
original data than in surrogates (Figs.9a,b). R had a C effect 
for the causal link from SAP to HP in 77% and 100% of the 
subjects at REST and during HUT respectively, while R had a 
S influence in 0% and 0%. R was a confounder for the causal 
link from HP to SAP in 77% and 85% of the subjects at REST 
and during HUT respectively, while R was a suppressor in 0% 
and 0%. 

Figure 10 has the same structure as Fig.9 but it shows 
IP(MCBF;MAP,R) (Fig.10a) and IP(MAP;MCBF,R) (Fig.10b). 
Regardless of the monitored variable [i.e. IP(MCBF;MAP,R) 
or IP(MAP;MCBF,R)] (Figs.10a,b), no significant differences 
were found between experimental conditions (i.e. REST 
versus HUT), while significant variations were observed 
between the two types of series (i.e. original data versus 
surrogates). R had a C effect for the causal link from MAP to 
MCBF in 62% and 77% of the subjects in PRE and POST 
respectively, while R had a S influence in 0% and 0%. R was a 
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confounder for the reverse causal pathway (i.e. MCBF to 
MAP) in 77% and 77% of the subjects in PRE and POST 
respectively, while R was a suppressor in 15% and 0%. 

VI. DISCUSSION  

The main methodological findings of this study can be 
summarized as follows: i) we propose a test based on the 
computation of the net redundancy/synergy balance to test 
C/S; ii) the C/S test can exploit metrics computed in the 
predictability and TE frameworks, even though subtle 
differences are present; iii) the proposed C/S test needs some a 
priori knowledge to distinguish among specific causal 
structures usually of interest in practical applications. 

The main experimental findings of this study can be 
summarized as follows: i) R behaves as a confounder of the 
CV variability interactions and the relevance of the C role 
depends on the experimental challenge; ii) similar conclusions 
hold for the role of R on CBV variability interactions.  

A. Testing C/S via Net Redundancy/Synergy Balance 

This study demonstrates that testing the sign of the net 
redundancy/synergy balance allows the classification of the 
influence of a third variable on the causal relationship from 
source to target. Indeed, the sign of the net 
redundancy/synergy balance can distinguish a situation in 
which the knowledge of the third variable decreases the 
strength of the causal relationship from source to target, 
namely C, from a situation in which the observation of a third 
variable improves the ability of source in predicting target 
future evolution, namely S. More precisely, in C the net 
redundancy/synergy balance is positive, while it is negative in 
S. Given that the net redundancy/synergy is symmetric under 
reversal of the role of the two input variables, exchanging the 
third variable with the source does not modify conclusions. 
When considering the influences of two sources on a target the 
net redundancy/synergy balance is commonly utilized to 
evaluate the redundant/synergistic character of the two input 
variables in predicting the target behavior [4], [8]-[11], [25]-
[29]. A positive value of the net redundancy/synergy balance 
indicates that the two sources, when observed individually, 
allow a more informative comprehension of the behavior of 
the target compared to their joint observation, namely a 
dominant redundancy resulting from a certain amount of 
shared information between sources about target effects. 
Conversely, a negative value indicates the opposite situation 
with a prevalent synergy indicating that the two sources 
exhibited some complementary information about the target 
effects. Therefore, the possibility of using the net 
redundancy/synergy balance to test C/S allows us to place side 
by side two interpretations of net redundancy/synergy balance: 
the more usual interpretation as a measure of the different 
ability of two variables in predicting the target when observed 
individually compared to when observed together is 
accompanied by the additional interpretation as a measure of 
the capacity of the third conditioning variable to modify the 
ability of a source in predicting the target. Simulations proved 
that C/S effects of a third variable on an input-output 

relationship could be generated via a very simple model 
structure under different causal configurations (i.e. US, CD 
and M). 

B. Differences in Performing the C/S Test via Predictability 
and TE Decomposition Frameworks 

The C/S test was developed using a metric of net 
redundancy/synergy balance defined in the predictability 
decomposition framework such as IP [9], [10], but it holds 
even using an analog metric in the TE decomposition 
framework such as ITE [4], [8] [10], [11], [27]-[29]. However, 
the careful comparison of Fig.5 with Fig.6 clearly indicates the 
C/S test exploiting the definition of ITE might be biased 
toward an excess of S detection. Indeed, the nonlinear nature 
of the logarithmic function featuring steeper slopes for values 
of the argument smaller than 1 and smoother slopes for values 
of the argument larger than 1 leads to the magnification of the 
departures below 0 with respect to those above 0. This effect 
of the logarithm is responsible for the bias toward negative 
values of ITE in the case of US in theoretical studies [4], [8] 
and for a greater percentage of subjects showing synergy 
based on ITE than IP in experimental data [10]. 

C. The C/S Test Is Useless in Identifying Specific Causal 
Structures 

While the proposed C/S test distinguishes between C and S, 
this study demonstrates that it cannot be fruitfully exploited to 
identify peculiar causal structures. For example, given two 
common causal schemes such as CD and M, simulations 
proved that CD and M cannot be distinguished because they 
led to both positive and negative values of IP (Figs.4,5). Even 
the situation of US, theoretically leading to null values of IP, 
could be distinguished from CD and M exclusively in 
statistical sense. Indeed, in the US scheme IP values different 
from 0 were found due to the variability of prediction errors 
linked to the use of different noise realizations (Fig.3). More 
remarkably, the magnitude of the IP departures from 0 
depended on the model parameters (Fig.3), thus introducing an 
additional difficulty to separate US from CD and M. 
Therefore, we conclude that, without some extra physiological 
information, it is impossible to privilege a causal variability 
interaction structure with respect to another with the exclusive 
use of IP. 

D. R Is a Confounder for CV Variability Interactions and the 
Relevance of the C Role Depends on the Experimental 
Challenge 

Since IP(HP;SAP,R) and IP(SAP;HP,R) were significantly 
different from uncoupled surrogates and significantly above 0 
in a sizable fraction of subjects regardless of the protocol and 
experimental condition, R is a C for the CV variability 
interactions. R is so powerful in disturbing directly or 
indirectly cardiac and vascular controls that it is not surprising 
to find out that accounting for R reduces the strength of the 
causal relationship from SAP to HP and vice versa [35]. 
Therefore, we recommend recording R in any experimental 
session devoted to elucidating CV regulation [36]-[38] and to 
include R in any model describing the CV variability 

Authorized licensed use limited to: Univ degli Studi di Palermo - Univ of Palermo. Downloaded on March 26,2022 at 18:49:45 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2021.3135313, IEEE
Transactions on Biomedical Engineering

TBME-01231-2021-R3 
 

 

9

interactions [12], [16]-[18], [39]-[44]. This result is in 
agreement with previous studies that detected at REST an 
excess of redundancy of SAP and R and of HP and R in 
predicting HP and SAP respectively [10], [11], [45]. The 
dominant presence of redundancy of R was observed even in 
bivariate applications at the level of cardiorespiratory control, 
especially whether the respiratory drive was empowered via 
controlled breathing [46]. 

The C effect of R on the causal relationship from SAP to 
HP increased during general anesthesia. This result is the 
likely consequence of the powerful action of mechanical 
ventilation that induces periodical modifications of the 
intrathoracic pressure modulating venous return to the right 
atrium and, consequently, left ventricular stroke volume and 
SAP [31], [47]-[49]. Fluctuations of SAP at the ventilatory 
rate can induce HP changes at the same frequency via the 
activity of a residual baroreflex [12]. Conversely, over the 
reverse causal direction (i.e. from HP to SAP) the C role of R 
diminishes because the residual respiratory oscillations of HP 
are less importantly transferred to SAP due to dramatic 
reduction of the gain of the mechanical feedforward pathway 
[12] resulting from a depressed sympathetic control, reduced 
cardiac contractility and profound vasodilation [12], [50]-[56]. 

HUT did not modify the role of R over the CV variability 
interactions. Indeed, IP remained unvaried during the 
orthostatic challenge. This finding is in disagreement with [10] 
who suggested that the vagal withdrawal, reducing the amount 
of HP changes at the respiratory rate, and the decrease of the 
baroreflex gain [57]-[59] could explain the reduction of 
redundancy of R and HP over SAP and of R and SAP over HP 
respectively observed during HUT [10]. However, in the 
present study the limited tilt table inclination (i.e. 60°) might 
have induced an insufficient modification of vagal and 
baroreflex controls to cause a significant variation of IP. 

E. R Is a Confounder for CBV Variability Interactions and 
the Relevance of the C Role Depends on the Experimental 
Challenge 

Since IP(MCBF;MAP,R) and IP(MAP;MCBF,R) were above 
the level set by uncoupled surrogates and significantly larger 
than 0 in a relevant fraction of individuals in both protocols, R 
plays the C role for the CBV variability interactions. The 
finding that accounting for R reduces the strength of the causal 
relationship from MAP to MCBF and vice versa cannot be 
taken for granted a priori. Indeed, the series of MAP and 
MCBF, even though contaminated by R, exhibit important 
rhythmicities at frequency slower than the respiratory rate 
[60]. Therefore, we recommend recording R in any 
experimental session devoted to elucidating CBV regulation. 
This recommendation is particularly relevant given that CBV 
mechanisms were commonly assessed without recording R 
[19]-[22], [60]-[65]. The C role of R over CBV variability 
interactions might have led to an overestimation of the 
strength of MAP-MCBF association in time or frequency 
domains and this overestimation might depend on the 
experimental condition [65]-[68]. 

General anesthesia with propofol modified the role of R on 

the CBV dynamic interactions. More specifically, R remains a 
confounder but its effect was more important on the pressure-
to-flow relationship during POST compared to PRE, while it 
was less important on the reverse causal link. The more 
remarkable effect of R on the pressure-to-flow pathway might 
be related to more powerful effect of mechanical ventilation 
compared to spontaneous breathing in pacing venous return 
modifications [38], [47]-[49]. Conversely, the decreased 
relevance of measuring R when assessing the ability of MCBF 
in predicting MAP might be linked to the depression of the 
sympathetic control induced by propofol [12], [50]-[56]. that 
might have affected the efficiency of the Cushing reflex [34], 
[62], [63], [69], [70]. 

HUT did not alter the role of R on the CBV dynamic 
interactions. Indeed, the observation of R did not modify the 
ability of MAP in predicting MCBF. This result might be 
compatible with a preserved ability of CBV mechanisms to 
keep constant MCBF and limit its variability during HUT. The 
assessment of IP in a group of subjects prone to develop 
orthostatic syncope [34], [71], [72] or in subjects featuring the 
impairment of CA [73]-[75] might be helpful to verify this 
conjecture. HUT did not alter the role of R over the causal 
relationship from MCBF to MAP as well. Sympathetic 
activation induced by the postural challenge might have 
contributed to preserve the role of R on the flow-to-pressure 
link.  

VII. CONCLUSION 

We propose a C/S test to categorize the role of any vector 
variable that is known to disturb an input-output relationship. 
The test exploits the multivariate autoregressive modeling 
class but it can be easily turned out to be model-free because it 
uses the general concept of predictability improvement [1]. 
The application of the C/S test allowed a better 
characterization of the role of R over CV and CBV regulations 
under control condition and in response to challenges 
modifying the status of autonomic nervous system, such as 
propofol-based general anesthesia and gravitational stimulus. 
The C/S test might be useful to tailor modelling structures that 
more specifically describe the action of R over a causal 
relationship from a source to a target variable, to design 
experimental protocols capable to modify the role of R, to 
better characterize a pathology according to the type of the 
impact of R and to monitor whether countermeasures 
involving R are effective. We remark that the two different 
protocol settings might have introduced additional factors that 
could limit the generality of the conclusions. The class of 
linear parametric models utilized in this study, although 
frequently exploited to describe HP-SAP and MCBF-MAP 
dynamic relationship and exhibiting a significant goodness of 
fit as confirmed by this study as well, might be too broad to 
describe peculiar features of the underlying physiological 
interactions. Therefore, this class should be taken as a first 
attempt in modeling the physiology and future refinements 
should be proposed to account for the complexity of 
physiological interactions such as nonlinear behaviors and 
hysteresis phenomena. Future studies should extend this 
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technique to the modeling approaches present in literature 
[16]-[22], with a particular focus on the class of nonlinear 
models [1], [16], [19], [21], [22], with the aim at comparing 
results. 

APPENDIX 

Tables I and II report the optimal model order pO and 
goodness of fit ρ of the model exploited to compute the IP in 
the PRE-POST and REST-HUT protocols respectively. In the 
PRE-POST protocol pO increased significantly during POST 
compared to PRE in both original matched and surrogate 
unmatched pairs but no difference was observed between 
types of analysis within the same experimental condition. In 
the PRE-POST protocol ρ decreased over surrogate series 
compare to the original ones and this trend was evident in both 
experimental sessions. ρ increased for IP(SAP;HP,R) and 
IP(MAP;MCBF,R) in POST compared to PRE in both original 
matched and surrogate unmatched pairs. A tendency towards a 
decrease of ρ with the induction of general anesthesia was 
observed for both IP(HP;SAP,R) and IP(MCBF;MAP,R) 
regardless of the type of analysis. In REST-HUT protocol pO 
did not vary either with postural challenge or type of series. 
The REST-HUT protocol confirmed the decrease of ρ over 
surrogate data compared to the original ones and this result 

held in both experimental sessions. In the same protocol ρ 
remained unvaried with the orthostatic challenge regardless of 
the type of analysis, with the notable exception of ρ for 
IP(HP;SAP,R). 
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