75 research outputs found

    Design and construction of a distributed sensor NET for biotelemetric monitoring of brain energetic metabolism using microsensors and biosensors

    Get PDF
    Neurochemical pathways involved in brain physiology or disease pathogenesis are mostly unknown either in physiological conditions or in neurodegenerative diseases. Nowadays the most frequent usage for biotelemetry is in medicine, in cardiac care units or step-down units in hospitals, even if virtually any physiological signal could be transmitted (FCC, 2000; Leuher, 1983; Zhou et al., 2002). In this chapter we present a wireless device connected with microsensors and biosensors capable to detect real-time variations in concentrations of important compounds present in central nervous system (CNS) and implicated in brain energetic metabolism (Bazzu et al., 2009; Calia et al., 2009)

    Selective and sensitive poly-<i>ortho</i>-phenylenediamine-shielded microsensore and biosensors for in vivo neurochemical monitoring

    Get PDF
    Different methodologies are being developed, such as imaging, spectroscopy and electrochemistry, to study neurochemical dynamics in cell cultures or in intact brain [1-2]. One of these techniques involves the in-situ detection of biologically active molecules, including nitric oxide (NO) [3], glucose [4], glutamate (GLUT) [5-6] and lactate [1,7], in brain extracellular fluid (ECF), using implanted microsensors and biosensors. NO is a water-soluble free radical that readily diffuses through membranes and its actions in the CNS are largely studied

    Neuroprotective effect of (R)-(-)-linalool on oxidative stress in PC12 cells

    Get PDF
    Background: Oxidative stress plays an important role in neurodegeneration, pain and inflammation. (R)-(-)- linalool (LIN) is endowed with neuroprotective, anti-nociceptive and anti-inflammatory properties. Purpose: The present study aims at investigating the hypothesis that LIN’s neuroprotective, antinociceptive and anti-inflammatory properties descend from its ability to act as antioxidant. The study challenges this hypothesis by verifying whether LIN may counteract hydrogen peroxide (H 2 O 2 )-induced oxidative stress in PC12 cells. Methods: In H 2 O 2 -exposed PC12 cells, LIN was tested on a) cell viability, measured by 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT), b) damage of plasma membrane, measured by lactate dehydrogenase (LDH) release, c) intracellular levels of reactive-oxygen-species (ROS), d) apoptosis and e) cell cycle distribution. Results: Under H 2 O 2 -induced cell viability reduction, LIN protects PC12 cells. Likewise, LIN protects cells from oxidative damage by preventing the H 2 O 2 -dependent increase of LDH release, counteracts intracellular ROS overproduction and reduces H 2 O 2 -induced apoptosis. Finally, the results of the cell cycle analysis from cells exposed to H 2 O 2 indicate that LIN incubation reduces the number of cells induced into quiescence by H 2 O 2 in the G2/M phase. Conclusions: These findings indicate that LIN protects PC12 cells from H 2 O 2 -induced oxidative stress. This mech- anism could justify the neuroprotective, anti-nociceptive and anti-inflammatory effects of this compound and suggest LIN as a potential therapeutic agent for the management oxidative stress-mediated pain

    Ethanol-Dependent Synthesis of Salsolinol in the Posterior Ventral Tegmental Area as Key Mechanism of Ethanol’s Action on Mesolimbic Dopamine

    Get PDF
    Abnormal consumption of ethanol, the ingredient responsible for alcoholic drinks’ addictive liability, causes millions of deaths yearly. Ethanol’s addictive potential is triggered through activation, by a still unknown mechanism, of the mesolimbic dopamine (DA) system, part of a key motivation circuit, DA neurons in the posterior ventral tegmental area (pVTA) projecting to the ipsilateral nucleus accumbens shell (AcbSh). The present in vivo brain microdialysis study, in dually-implanted rats with one probe in the pVTA and another in the ipsilateral or contralateral AcbSh, demonstrates this mechanism. As a consequence of the oral administration of a pharmacologically relevant dose of ethanol, we simultaneously detect a) in the pVTA, a substance, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), untraceable under control conditions, product of condensation between DA and ethanol’s first by-product, acetaldehyde; and b) in the AcbSh, a significant increase of DA release. Moreover, such newly generated salsolinol in the pVTA is responsible for increasing AcbSh DA release via m opioid receptor (mOR) stimulation. In fact, inhibition of salsolinol’s generation in the pVTA or blockade of pVTA mORs prevents ethanol-increased ipsilateral, but not contralateral, AcbSh DA release. This evidence discloses the long-sought key mechanism of ethanol’s addictive potential and suggests the grounds for developing preventive and therapeutic strategies against abnormal consumption

    Real-Time Monitoring of Brain Tissue Oxygen Using a Miniaturized Biotelemetric Device Implanted in Freely Moving Rats

    Get PDF
    A miniaturized biotelemetric device for the amperometric detection of brain tissue oxygen is presented. The new system, derived from a previous design, has been coupled with a carbon microsensor for the real-time detection of dissolved O(2) in the striatum of freely moving rats. The implantable device consists of a single-supply sensor driver, a current-to-voltage converter, a microcontroller, and a miniaturized data transmitter. The oxygen current is converted to a digital value by means of an analog-to-digital converter integrated in a peripheral interface controller (PIC). The digital data is sent to a personal computer using a six-byte packet protocol by means of a miniaturized 434 MHz amplitude modulation (AM) transmitter. The receiver unit is connected to a personal computer (PC) via a universal serial bus. Custom developed software allows the PC to store and plot received data. The electronics were calibrated and tested in vitro under different experimental conditions and exhibited high stability, low power consumption, and good linear response in the nanoampere current range. The in vivo results confirmed previously published observations on oxygen dynamics in the striatum of freely moving rats. The system serves as a rapid and reliable model for studying the effects of different drugs on brain oxygen and brain blood flow and it is suited to work with direct-reduction sensors or O(2)-consuming biosensors

    The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induces apoptosis in mouse nigrostriatal glia. Relevance to nigral neuronal death and striatal neurochemical changes.

    Get PDF
    Swiss mice were given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 25 mg/kg/day, for 5 consecutive days and killed at different days after MPTP discontinuance. Decreases in striatal tyrosine hydroxylase activity and levels of dopamine and its metabolites were observed 1 day after MPTP discontinuance. Ascorbic acid and glutamate levels had increased, dehydroascorbic acid and GSH decreased, whereas catabolites of high-energy phosphates (inosine, hypoxanthine, xanthine, and uric acid) were unchanged. In addition, gliosis was observed in both striatum and substantia nigra compacta (SNc). Sections of SNc showed some terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling (TUNEL)-positive cells. Neurochemical parameters of dopaminergic activity showed a trend toward recovery 3 days after MPTP discontinuance. At this time point, TUNEL-positive cells were detected in SNc; some of them showed nuclei with neuronal morphology. A late (days 6-11) increase in striatal dopamine oxidative metabolism, ascorbic acid oxidative status, and catabolites of high-energy phosphates were observed concomitant with nigral neuron and nigrostriatal glial cell apoptotic death, as revealed by TUNEL, acridine orange, and Hoechst staining, and transmission electron microscopy. These data suggest that MPTP-induced activation/apoptotic death of glial cells plays a key role in the sequential linkage of neurochemical and cellular events leading to dopaminergic nigral neuron apoptotic death

    Neurological morphofunctional differentiation induced by REAC technology in PC12: a neuro protective model for Parkinson's disease

    Get PDF
    Research for the use of physical means, in order to induce cell differentiation for new therapeutic strategies, is one of the most interesting challenges in the field of regenerative medicine, and then in the treatment of neurodegenerative diseases, Parkinson’s disease (PD) included. The aim of this work is to verify the effect of the radio electric asymmetric conveyer (REAC) technology on the PC12 rat adrenal pheochromocytoma cell line, as they display metabolic features of PD. PC12 cells were cultured with a REAC regenerative tissue optimization treatment (TO-RGN) for a period ranging between 24 and 192 hours. Gene expression analysis of specific neurogenic genes, as neurogenin-1, beta3-tubulin and Nerve growth factor, together with the immunostaining analysis of the specific neuronal protein beta3-tubulin and tyrosine hydroxylase, shows that the number of cells committed toward the neurogenic phenotype was significantly higher in REAC treated cultures, as compared to control untreated cells. Moreover, MTT and Trypan blue proliferation assays highlighted that cell proliferation was significantly reduced in REAC TO-RGN treated cells. These results open new perspectives in neurodegenerative diseases treatment, particularly in PD. Further studies will be needed to better address the therapeutic potential of the REAC technology

    Biotelemetric Monitoring of Brain Neurochemistry in Conscious Rats Using Microsensors and Biosensors

    Get PDF
    In this study we present the real-time monitoring of three key brain neurochemical species in conscious rats using implantable amperometric electrodes interfaced to a biotelemetric device. The new system, derived from a previous design, was coupled with carbon-based microsensors and a platinum-based biosensor for the detection of ascorbic acid (AA), O2 and glucose in the striatum of untethered, freely-moving rats. The miniaturized device consisted of a single-supply sensor driver, a current-to-voltage converter, a microcontroller and a miniaturized data transmitter. The redox currents were digitized to digital values by means of an analog-to-digital converter integrated in a peripheral interface controller (PIC), and sent to a personal computer by means of a miniaturized AM transmitter. The electronics were calibrated and tested in vitro under different experimental conditions and exhibited high stability, low power consumption and good linear response in the nanoampere current range. The in-vivo results confirmed previously published observations on striatal AA, oxygen and glucose dynamics recorded in tethered rats. This approach, based on simple and inexpensive components, could be used as a rapid and reliable model for studying the effects of different drugs on brain neurochemical systems

    Antiproliferative and proapoptotic effects of Inula viscosa extract on Burkitt lymphoma cell line.

    Get PDF
    Burkitt lymphoma is a very aggressive B-cell non-Hodgkin lymphoma. Although remarkable progress has been made in the therapeutic scenario for patients with Burkitt lymphoma, search and development of new effective anticancer agents to improve patient outcome and minimize toxicity has become an urgent issue. In this study, the antitumoral activity of Inula viscosa, a traditional herb obtained from plants collected on the Asinara Island, Italy, was evaluated in order to explore potential antineoplastic effects of its metabolites on Burkitt lymphoma. Raji human cell line was treated with increasing Inula viscosa extract concentration for cytotoxicity screening and subsequent establishment of cell cycle arrest and apoptosis. Moreover, gene expression profiles were performed to identify molecular mechanisms involved in the anticancer activities of this medical plant. The Inula viscosa extract exhibited powerful antiproliferative and cytotoxic activities on Raji cell line, showing a dose- and time-dependent decrease in cell viability, obtained by cell cycle arrest in the G2/M phase and an increase in cell apoptosis. The treatment with Inula viscosa caused downregulation of genes involved in cell cycle and proliferation (c-MYC, CCND1) and inhibition of cell apoptosis (BCL2, BCL2L1, BCL11A). The Inula viscosa extract causes strong anticancer effects on Burkitt lymphoma cell line. The molecular mechanisms underlying such antineoplastic activity are based on targeting and downregulation of genes involved in cell cycle and apoptosis. Our data suggest that Inula viscosa natural metabolites should be further exploited as potential antineoplastic agents against Burkitt lymphoma
    • …
    corecore