696 research outputs found

    Resolution of the Compact Radio Continuum Sources in Arp220

    Get PDF
    We present 2 cm and 3.6 cm wavelength very long baseline interferometry images of the compact radio continuum sources in the nearby ultra-luminous infrared galaxy Arp220. Based on their radio spectra and variability properties, we confirm these sources to be a mixture of supernovae (SNe) and supernova remnants (SNRs). Of the 17 detected sources we resolve 7 at both wavelengths. The SNe generally only have upper size limits. In contrast all the SNRs are resolved with diameters {\geq} 0.27 pc. This size limit is consistent with them having just entered their Sedov phase while embedded in an interstellar medium (ISM) of density 10^4 cm^{-3} . These objects lie on the diameter-luminosity correlation for SNRs (and so also on the diameter-surface brightness relation) and extend these correlations to very small sources. The data are consistent with the relation L {\propto} D^{-9/4}. Revised equipartition arguments adjusted to a magnetic field to relativistic particle energy density ratio of 1% combined with a reasonable synchrotron-emitting volume filling factor of 10% give estimated magnetic field strengths in the SNR shells of ~ 15-50 mG. The SNR shell magnetic fields are unlikely to come from compression of ambient ISM fields and must instead be internally generated. We set an upper limit of 7 mG for the ISM magnetic field. The estimated energy in relativistic particles, 2%-20% of the explosion kinetic energy, is consistent with estimates from models that fit the IR-radio correlation in compact starburst galaxies.Comment: 16 pages, 5 figure

    Dependence of radio halo properties on star formation activity and galaxy mass

    Get PDF
    We investigate the relation between the existence and size of radio halos, which are believed to be created by star formation (SF) related energy input into the interstellar medium, and other galaxy properties, most importantly star formation activity and galaxy mass. Based on radio continuum and H-alpha observations of a sample of seven late-type spiral galaxies we find a direct, linear correlation of the radial extent of gaseous halos on the size of the actively star-forming parts of the galaxy disks. Data of a larger sample of 22 galaxies indicate that the threshold energy input rate into the disk ISM per unit surface area for the creation of a gaseous halo depends on the mass surface density of the galaxy, in the sense that a higher threshold must be surpassed for galaxies with a higher surface density. Because of the good prediction of the existence of a radio halo from these two parameters, we conclude that they are important, albeit not the only contributors. The compactness of the SF-related energy input is also found to be a relevant factor. Galaxies with relatively compact SF distributions are more likely to have gaseous halos than others with more widespread SF activity. These results quantify the so-called "break-out" condition for matter to escape from galaxy disks, as used in all current models of the interstellar medium and first defined by Norman and Ikeuchi (1989).Comment: accepted for publication in Astronomy & Astrophysic

    Manned Mars landing missions using electric propulsion

    Get PDF
    Manned Mars landing missions using electric propulsion - evaluation of various mission profile

    Imaging Fabry-Perot Spectroscopy of NGC 5775: Kinematics of the Diffuse Ionized Gas Halo

    Full text link
    We present imaging Fabry-Perot observations of Halpha emission in the nearly edge-on spiral galaxy NGC 5775. We have derived a rotation curve and a radial density profile along the major axis by examining position-velocity (PV) diagrams from the Fabry-Perot data cube as well as a CO 2-1 data cube from the literature. PV diagrams constructed parallel to the major axis are used to examine changes in azimuthal velocity as a function of height above the midplane. The results of this analysis reveal the presence of a vertical gradient in azimuthal velocity. The magnitude of this gradient is approximately 1 km/s/arcsec, or about 8 km/s/kpc, though a higher value of the gradient may be appropriate in localized regions of the halo. The evidence for an azimuthal velocity gradient is much stronger for the approaching half of the galaxy, although earlier slit spectra are consistent with a gradient on both sides. There is evidence for an outward radial redistribution of gas in the halo. The form of the rotation curve may also change with height, but this is not certain. We compare these results with those of an entirely ballistic model of a disk-halo flow. The model predicts a vertical gradient in azimuthal velocity which is shallower than the observed gradient, indicating that an additional mechanism is required to further slow the rotation speeds in the halo.Comment: 18 pages, 18 figures. Uses emulateapj.cls. Accepted for publication in Ap

    The multi-phase gaseous halos of star forming late-type galaxies - II. Statistical analysis of key parameters

    Get PDF
    In Paper I we showed that multi-phase gaseous halos of late-type spiral galaxies, detected in the radio continuum, in Halpha, and in X-rays, are remarkably well correlated regarding their morphology and spatial extent. In this work we present new results from a statistical analysis in order to specify and quantify these phenomenological relations. This is accomplished by investigating soft X-ray (0.3-2.0keV) luminosities, FIR, radio continuum, Halpha, B-band, and UV luminosities for a sample of 23 edge-on late-type spiral galaxies. Typical star formation indicators, such as SFRs, are determined and a statistical correlation analysis is carried out. We find strong linear correlations, covering at least two orders of magnitude, between star formation indicators and integrated (disk+halo) luminosities in all covered wavebands. In addition to the well established L_FIR/L_1.4GHz-relation, we show new and highly significant linear dependencies between integrated soft X-ray luminosities and FIR, radio continuum, Halpha, B-band, and UV luminosities. Moreover, integrated soft X-ray luminosities correlate well with SFRs and the energy input into the ISM by SNe. The same holds if these quantities are plotted against soft halo X-ray luminosities. Only a weak correlation exists between the dust mass of a galaxy and the corresponding X-ray luminosity. Among soft X-ray luminosities, baryonic, and HI-gas masses, no significant correlations are found. There seems to exist a critical input energy by SNe into the ISM or a SFR threshold for multi-phase halos to show up. It is still not clear whether this threshold is a physical or an instrument dependent sensitivity limit. These findings strongly support our previous results, but conflict with the concept of halos being due to infalling gas from the IGM.Comment: 8 pages, 3 figures, 1 table, accepted for publication in A&
    • 

    corecore