1,125 research outputs found

    Supergravity Inflation on the Brane

    Get PDF
    We study N=1 Supergravity inflation in the context of the braneworld scenario. Particular attention is paid to the problem of the onset of inflation at sub-Planckian field values and the ensued inflationary observables. We find that the so-called η\eta-problem encountered in supergravity inspired inflationary models can be solved in the context of the braneworld scenario, for some range of the parameters involved. Furthermore, we obtain an upper bound on the scale of the fifth dimension, M_5 \lsim 10^{-3} M_P, in case the inflationary potential is quadratic in the inflaton field, ϕ\phi. If the inflationary potential is cubic in ϕ\phi, consistency with observational data requires that M5≃9.2×10−4MPM_5 \simeq 9.2 \times 10^{-4} M_P.Comment: 6 pages, 1 figure, to appear in Phys. Rev.

    Topological Inflation in Dual Superstring Models

    Get PDF
    We study the possibility of obtaining inflationary solutions from S-dual superstring potentials. We find, in particular, that such solutions occur at the core of domain walls separating degenerate minima whose positions differ by modular transformations.Comment: 12 pages, uuencoded gzipped tar format, Latex, 2 figure

    Probing neutrino non-standard interactions with atmospheric neutrino data

    Get PDF
    We have reconsidered the atmospheric neutrino anomaly in light of the laetst data from Super-Kamiokande contained events and from Super-Kamiokande and MACRO up-going muons. We have reanalysed the proposed solution to the atmospheric neutrino anomaly in terms of non-standard neutrino-matter interactions (NSI) as well as the standard nu_mu -> nu_tau oscillations (OSC). Our statistical analysis shows that a pure NSI mechanism is now ruled out at 99%, while the standard nu_mu -> nu_tau OSC mechanism provides a quite remarkably good description of the anomaly. We therefore study an extended mechanism of neutrino propagation which combines both oscillation and non-standard neutrino-matter interactions, in order to derive limits on flavour-changing (FC) and non-universal (NU) neutrino interactions. We obtain that the off-diagonal flavour-changing neutrino parameter epsilon and the diagonal non-universality neutrino parameter epsilon' are confined to -0.03 < epsilon < 0.02 and |epsilon'| < 0.05 at 99.73% CL. These limits are model independent and they are obtained from pure neutrino-physics processes. The stability of the neutrino oscillation solution to the atmospheric neutrino anomaly against the presence of non-standard neutrino interactions establishes the robustness of the near-maximal atmospheric mixing and massive-neutrino hypothesis. The best agreement with the data is obtained for Delta_m^2 = 2.3*10^{-3} eV^2, sin^2(2*theta) = 1, epsilon = 6.7*10^{-3} and epsilon' = 1.1*10^{-3}, although the chi^2 function is quite flat in the epsilon and epsilon' directions for epsilon, epsilon' -> 0.Comment: 26 pages, LaTeX file using REVTeX4, 1 table and 12 figures included. Added a revised analysis which takes into account the new 1489-day Super-Kamiokande and final MACRO data. The bound on NSI parameters is considerably improve

    Soft lepton-flavor violation in a multi-Higgs-doublet seesaw model

    Get PDF
    We consider the Standard Model with an arbitrary number n_H of Higgs doublets and enlarge the lepton sector by adding to each lepton family \ell a right-handed neutrino singlet \nu_{\ell R}. We assume that all Yukawa-coupling matrices are diagonal, but the Majorana mass matrix M_R of the right-handed neutrino singlets is an arbitrary symmetric matrix, thereby introducing an explicit but soft violation of all lepton numbers. We investigate lepton-flavor-violating processes within this model. We pay particular attention to the large-m_R behavior of the amplitudes for these processes, where m_R is the order of magnitude of the matrix elements of M_R. While the amplitudes for processes like tau^- --> mu^- gamma and Z --> tau^+ mu^- drop as 1/m_R^2 for arbitrary n_H, processes like tau^- --> mu^- e^+ e^- and mu^- --> e^- e^+ e^- obey this power law only for n_H = 1. For n_H \geq 2, on the contrary, those amplitudes do not fall off when m_R increases, rather they converge towards constants. This non-decoupling of the right-handed scale occurs because of the sub-process ell^- --> ell'^- {S_b^0}^*, where S_b^0 is a neutral scalar which subsequently decays to e^+ e^-. That sub-process has a contribution from charged-scalar exchange which, for n_H \geq 2, does not decrease when m_R tends to infinity. We also perform a general study of the non-decoupling and argue that, after performing the limit m_R --> \infty and removing the \nu_R from the Lagrangian, our model becomes a multi-Higgs-doublet Standard Model with suppressed flavor-changing Yukawa couplings. Finally, we show that, with the usual assumptions about the mass scales in the seesaw mechanism, the branching ratios of all lepton-flavor-changing processes are several orders of magnitude smaller than present experimental limits.Comment: 46 pages, 2 figures, Revte

    N=1 Supergravity Chaotic Inflation in the Braneworld Scenario

    Full text link
    We study a N=1 Supergravity chaotic inflationary model, in the context of the braneworld scenario. It is shown that successful inflation and reheating consistent with phenomenological constraints can be achieved via the new terms in the Friedmann equation arising from brane physics. Interestingly, the model satisfies observational bounds with sub-Planckian field values, implying that chaotic inflation on the brane is free from the well known difficulties associated with the presence of higher order non-renormalizable terms in the superpotential. A bound on the mass scale of the fifth dimension, M_5 \gsim 1.3 \times 10^{-6} M_P, is obtained from the requirement that the reheating temperature be higher than the temperature of the electroweak phase transition.Comment: 5 pages, 1 Table, Revtex

    Confusing non-standard neutrino interactions with oscillations at a neutrino factory

    Get PDF
    Most neutrino mass theories contain non-standard interactions (NSI) of neutrinos which can be either non-universal (NU) or flavor-changing (FC). We study the impact of such interactions on the determination of neutrino mixing parameters at a neutrino factory using the so-called ``golden channels'' \pnu{e}\to\pnu{\mu} for the measurement of \theta_{13}. We show that a certain combination of FC interactions in neutrino source and earth matter can give exactly the same signal as oscillations arising due to \theta_{13}. This implies that information about \theta_{13} can only be obtained if bounds on NSI are available. Taking into account the existing bounds on FC interactions, this leads to a drastic loss in sensitivity in \theta_{13}, at least two orders of magnitude. A near detector at a neutrino factory offers the possibility to obtain stringent bounds on some NSI parameters. Such near site detector constitutes an essential ingredient of a neutrino factory and a necessary step towards the determination of \theta_{13} and subsequent study of leptonic CP violation.Comment: 23 pages, 5 figures, improved version, accepted for publication in Phs. Rev. D, references adde

    WMAP and Supergravity Inflationary Models

    Full text link
    We study a class of N=1 Supergravity inflationary models in which the evolution of the inflaton dynamics is controlled by a single power in the inflaton field at the point where the observed density fluctuations are produced, in the context of the braneworld scenario, in light of WMAP results. In particular, we find that the bounds on the spectral index and its running constrain the parameter space both for models where the inflationary potential is dominated by a quadratic term and by a cubic term in the inflaton field. We also find that αs>0\alpha_s>0 is required for the quadratic model whereas αs<0\alpha_s<0 for the cubic model. Moreover, we have determined an upper bound on the five-dimensional Planck scale, M_5 \lsim 0.019 M, for the quadratic model. On the other hand, a running spectral index with ns>1n_s>1 on large scales and ns<1n_s<1 on small scales is not possible in either case.Comment: 7 pages, 4 eps figures, references corrected, version to appear in Phys. Rev.

    Effects of new physics in neutrino oscillations in matter

    Get PDF
    A new flavor changing electron neutrino interaction with matter would always dominate the nu_e oscillation probability at sufficiently high neutrino energies. Being suppressed by theta_{13}, the energy scale at which the new effect starts to be relevant may be within the reach of realistic experiments, where the peculiar dependence of the signal with energy could give rise to a clear signature in the nu_e --> nu_tau channel. The latter could be observed by means of a coarse large magnetized detector by exploiting tau --> mu decays. We discuss the possibility of identifying or constraining such effects with a high energy neutrino factory. We also comment on the model independent limits on them.Comment: 11 pages, 5 figure

    Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12

    Get PDF
    Haemolysin E is a cytolytic pore-forming toxin found in several Escherichia coli and Salmonella enterica strains. Expression of hlyE is repressed by the global regulator H-NS (histone-like nucleoid structuring protein), but can be activated by the regulator SlyA. Expression of a chromosomal hlyE–lacZ fusion in an E. coli slyA mutant was reduced to 60% of the wild-type level confirming a positive role for SlyA. DNase I footprint analysis revealed the presence of two separate SlyA binding sites, one located upstream, the other downstream of the hlyE transcriptional start site. These sites overlap AT-rich H-NS binding sites. Footprint and gel shift data showed that whereas H-NS prevented binding of RNA polymerase (RNAP) at the hlyE promoter (PhlyE), SlyA allowed binding of RNAP, but inhibited binding of H-NS. Accordingly, in vitro transcription analyses showed that addition of SlyA protein relieved H-NS-mediated repression of hlyE. Based on these observations a model for SlyA/H-NS regulation of hlyE expression is proposed in which the relative concentrations of SlyA and H-NS govern the nature of the nucleoprotein complexes formed at PhlyE. When H-NS is dominant RNAP binding is inhibited and hlyE expression is silenced; when SlyA is dominant H-NS binding is inhibited allowing RNAP access to the promoter facilitating hlyE transcription

    Entanglement of two-mode Bose-Einstein condensates

    Get PDF
    We investigate the entaglement characteristics of two general bimodal Bose-Einstein condensates - a pair of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic constituents are physically inaccessible and thus the degree of entanglement between individual particles, unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in the condensed state. We calculate the entanglement between the modes for the exact ground state of the two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled case.Comment: 11 pages, 8 figures, submitted to Physical Review A, to be presented at the third UQ Mathematical Physics workshop, Oct. 4-6; changes made in response to referee comment
    • 

    corecore