52 research outputs found
Temporal and spatial trends in stranding records of cetaceans on the Irish coast, 2002–2014
Using Irish strandings data collected between 2002 and 2014, seasonal and annual trends in the number of strandings for all strandings identified to species level (N ¼ 1480), and for the five most frequently reported species: common dolphin (25.7% of records), harbour porpoise (22.2%), long-finned pilot whale (8.8%), striped dolphin (6.9%) and bottlenose dolphin (6.9%) were investigated. With the exception of bottlenose dolphins, there was a significant linear increase in the number of strandings across years for all species and for all strandings collectively, that were identified to species-level. Only common dolphins demonstrated a significant increase in the proportion of records relative to all other strandings, which may be indicative of a real rise in the number of strandings of this species. Common dolphins and harbour porpoises showed a similar significant difference in monthly strandings, with more strandings occurring during the earlier months of the year.\ud
Significant differences in the gender of stranded animals were found in common, striped, bottlenose and Atlantic white-sided dolphins and sperm and pygmy sperm whales. Live and mass stranding events were primarily comprised of pelagic species. Most strandings occurred on the south and west coasts, with two hotspots for live and mass strandings identified. The patterns and trends identified are discussed in relation to the caveats in interpreting strandings data. Specifically to Ireland, the findings highlight the urgent need to build on the current volunteer reporting network and augment this comprehensive dataset with post-mortem examinations to better understand the cause of the trends identified. The importance of strandings data in informing conservation and management guidelines of these species’ is discussed
Same space, different standards : a review of cumulative effects assessment practice for marine mammals
The lead author is a PhD student, whose stipend during the undertaking of this work was provided by a James Watt scholarship (Heriot-Watt University). Financial support enabling the open access publication of this research was provided by Natural England - the government’s adviser for the natural environment in England.Marine mammals are vulnerable to a variety of acute and chronic anthropogenic stressors, potentially experiencing these in isolation, successively and/or simultaneously. Formal assessment of the likely impact(s) of the cumulative effects of multiple stressors on a defined population is carried out through a Cumulative Effects Assessment (CEA), which is a mandatory component of the Environmental Impact Assessment (EIA) process in many countries. However, for marine mammals, the information required to feed into CEA, such as thresholds for disturbance, frequency of multiple (and simultaneous) exposures, interactions between stressors, and individual variation in response, is extremely limited, though our understanding is slowly improving. The gaps in knowledge make it challenging to effectively quantify and subsequently assess the risk of individual and population consequences of multiple disturbances in the form of a CEA. To assess the current state of practice for assessing cumulative effects on marine mammals within UK waters, 93 CEAs were reviewed across eleven maritime industries. An objective framework of thirteen evaluative criteria was used to score each assessment on a scale of 13-52 (weak - strong). Scores varied significantly by industry. On average, the aquaculture industry produced the lowest scoring CEAs, whilst the large offshore windfarm industry (≥ 20 turbines) scored highest, according to the scoring criteria used. There was a significant increase in scores over the sample period (2009-2019), though this was mostly attributed to five industries (cable, large and small offshore wind farms, tidal and wave energy). There was inconsistency in the language used to define and describe cumulative effects and a lack of routinely applied methodology. We use the findings presented here, along with a wider review of the literature, to provide recommendations and discussion points aimed at supporting the standardisation and improvement of CEA practice. Although this research focused on how marine mammals were considered within UK CEAs, recommendations made are broadly applicable to assessments conducted for other receptors, countries and/or environments. Adoption of these proposals would help to ensure a more consistent approach, and would aid decision-makers and practitioners in mitigating any potential impacts, to ensure conservation objectives of marine mammal populations are not compromised.Publisher PDFPeer reviewe
Phylogenomics of the genus Tursiops and closely related Delphininae reveals extensive reticulation among lineages and provides inference about eco-evolutionary drivers
Phylogeographic inference has provided extensive insight into the relative roles of geographical isolation and ecological processes during evolutionary radiations. However, the importance of cross-lineage admixture in facilitating adaptive radiations is increasingly being recognised, and suggested as a main cause of phylogenetic uncertainty. In this study, we used a double digest RADseq protocol to provide a high resolution (∼ 4 Million bp) nuclear phylogeny of the Delphininae. Phylogenetic resolution of this group has been especially intractable, likely because it has experienced a recent species radiation. We carried out cross-lineage reticulation analyses, and tested for several sources of potential bias in determining phylogenies from genome sampling data. We assessed the divergence time and historical demography of T. truncatus and T. aduncus by sequencing the T. aduncus genome and comparing it with the T. truncatus reference genome. Our results suggest monophyly for the genus Tursiops, with the recently proposed T. australis species falling within the T. aduncus lineage. We also show the presence of extensive cross-lineage gene flow between pelagic and European coastal ecotypes of T. truncatus, as well as in the early stages of diversification between spotted (Stenella frontalis; Stenella attenuata), spinner (Stenella longirostris), striped (Stenella coeruleoalba), common (Delphinus delphis), and Fraser’s (Lagenodelphis hosei) dolphins. Our study suggests that cross-lineage gene flow in this group has been more extensive and complex than previously thought. In the context of biogeography and local habitat dependence, these results improve our understanding of the evolutionary processes determining the history of this lineage
Graz. Schloßberg.
Blick zum Schloßberg mit Hauptbrück
Ecological habitat partitioning and feeding specialisations of coastal minke whales (Balaenoptera acutorostrata) using a recently designated MPA in northeast Scotland
In the design of protected areas for cetaceans, spatial maps rarely take account of the life-history and behaviour of protected species relevant to their spatial ambit, which may be important for their management. In this study, we examined the distribution and feeding behaviours of adult versus juvenile minke whales (Balaenoptera acutorostrata) from long-term studies in the Moray Firth in northeast Scotland, where a Marine Protected Area (MPA) has recently been designated. Data were collected during dedicated boat surveys between 2001 and 2022 inclusive, from which 784 encounters with 964 whales of confirmed age-class (471 juveniles and 493 adults) were recorded from 56,263 km of survey effort, resulting in 238 focal follows. Adults and juveniles were occasionally seen together, but their distributions were not statistically correlated, and GIS revealed spatial separation / habitat partitioning by age-class―with juveniles preferring shallower, inshore waters with sandy-gravel sediments, and adults preferring deeper, offshore waters with greater bathymetric slope. GAMs suggested that the partitioning between age-classes was predominantly based on the differing proximity of animals to the shore, with juveniles showing a preference for the gentlest seabed slopes, and both adults and juveniles showing a similar preference for sandy gravel sediment types. However, the GAMs only used sightings data with available survey effort (2008 to 2022) and excluded depth due to collinearity issues. Whilst adult minkes employed a range of “active” prey-entrapment specialisations, showing inter-individual variation and seasonal plasticity in their targeted prey, juveniles almost exclusively used “passive” (low energy) feeding methods targeting low-density patches of inshore prey. These findings corroborate the need to incorporate demographic and behavioural data into spatial models when identifying priority areas for protected cetacean species. Not all areas within an MPA have equal value for a population and a better knowledge of the spatial preferences of these whales within the designated Scottish MPAs, appointed for their protection, is considered vital for their conservation
By
Mark recapture abundance estimates and distribution of bottlenose dolphins (Tursiops truncatus) using the southern coastline of the outer Moray Firth, NE Scotland
- …