4,788 research outputs found

    The pattern and distribution of deleterious mutations in maize

    Get PDF
    Most non-synonymous mutations are thought to be deleterious because of their effect on protein sequence. These polymorphisms are expected to be removed or kept at low frequency by the action of natural selection, and rare deleterious variants have been implicated as a possible explanation for the "missing heritability" seen in many studies of complex traits. Nonetheless, the effect of positive selection on linked sites or drift in small or inbred populations may also impact the evolution of deleterious alleles. Here, we made use of genome-wide genotyping data to characterize deleterious variants in a large panel of maize inbred lines. We show that, in spite of small effective population sizes and inbreeding, most putatively deleterious SNPs are indeed at low frequencies within individual genetic groups. We find that genes showing associations with a number of complex traits are enriched for deleterious variants. Together these data are consistent with the dominance model of heterosis, in which complementation of numerous low frequency, weak deleterious variants contribute to hybrid vigor

    Genetic, evolutionary and plant breeding insights from the domestication of maize.

    Get PDF
    The natural history of maize began nine thousand years ago when Mexican farmers started to collect the seeds of the wild grass, teosinte. Invaluable as a food source, maize permeated Mexican culture and religion. Its domestication eventually led to its adoption as a model organism, aided in large part by its large chromosomes, ease of pollination and growing agricultural importance. Genome comparisons between varieties of maize, teosinte and other grasses are beginning to identify the genes responsible for the domestication of modern maize and are also providing ideas for the breeding of more hardy varieties

    Corn shocks and bitterbrush| [Poems]

    Get PDF

    Hydrodynamic Irreversibility in Particle Suspensions with Non-Uniform Strain

    Get PDF
    A dynamical phase transition from reversible to irreversible behavior occurs when particle suspensions are subjected to uniform oscillatory shear, even in the Stokes flow limit. We consider a more general situation with non-uniform strain (e.g. oscillatory channel flow), which is observed to exhibit markedly different dynamics. Self-organization and shear-induced migration only partially explain the delayed, simultaneous onset of irreversibility across the channel. The onset of irreversibility is accompanied by long-range correlated particle motion. This motion leads to particle activity even at the channel center, where the strain is negligible, and prevents the system from evolving into a reversible state

    Viva Cepeda! Products Liability and Employee Protection

    Get PDF

    Recent Decisions - State and Federal: No Talisman Required for Floating Lien

    Get PDF

    Recent Decisions - State and Federal: Merger Doctrine Examined

    Get PDF
    • ā€¦
    corecore