200 research outputs found

    Power Spectrum Analysis of Polarized Emission from the Canadian Galactic Plane Survey

    Full text link
    Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization dataset at 1.4 GHz covering an area of 1060 deg2^2. The data analyzed are a combination of data from the 100-m Effelsberg Telescope, the 26-m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from ℓ≈60\ell \approx 60 to ℓ≈104\ell \approx 10^4 and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b=9∘b= 9^{\circ}, associated with the disk-halo transition in a 15∘^{\circ} region around l=108∘l=108^{\circ}. Localized variations in the index are found toward HII regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα\alpha emission) indicating that the thermal emission depolarizes background synchrotron emission.Comment: Accepted to ApJ; 17 page

    Unusually Luminous Giant Molecular Clouds in the Outer Disk of M33

    Full text link
    We use high spatial resolution (~7pc) CARMA observations to derive detailed properties for 8 giant molecular clouds (GMCs) at a galactocentric radius corresponding to approximately two CO scale lengths, or ~0.5 optical radii (r25), in the Local Group spiral galaxy M33. At this radius, molecular gas fraction, dust-to-gas ratio and metallicity are much lower than in the inner part of M33 or in a typical spiral galaxy. This allows us to probe the impact of environment on GMC properties by comparing our measurements to previous data from the inner disk of M33, the Milky Way and other nearby galaxies. The outer disk clouds roughly fall on the size-linewidth relation defined by extragalactic GMCs, but are slightly displaced from the luminosity-virial mass relation in the sense of having high CO luminosity compared to the inferred virial mass. This implies a different CO-to-H2 conversion factor, which is on average a factor of two lower than the inner disk and the extragalactic average. We attribute this to significantly higher measured brightness temperatures of the outer disk clouds compared to the ancillary sample of GMCs, which is likely an effect of enhanced radiation levels due to massive star formation in the vicinity of our target field. Apart from brightness temperature, the properties we determine for the outer disk GMCs in M33 do not differ significantly from those of our comparison sample. In particular, the combined sample of inner and outer disk M33 clouds covers roughly the same range in size, linewidth, virial mass and CO luminosity than the sample of Milky Way GMCs. When compared to the inner disk clouds in M33, however, we find even the brightest outer disk clouds to be smaller than most of their inner disk counterparts. This may be due to incomplete sampling or a potentially steeper cloud mass function at larger radii.Comment: Accepted for Publication in ApJ; 7 pages, 4 figure

    The Perils of Clumpfind: The Mass Spectrum of Sub-structures in Molecular Clouds

    Get PDF
    We study the mass spectrum of sub-structures in the Perseus Molecular Cloud Complex traced by 13CO (1-0), finding that dN/dM∝M−2.4dN/dM\propto M^{-2.4} for the standard Clumpfind parameters. This result does not agree with the classical dN/dM∝M−1.6dN/dM\propto M^{-1.6}. To understand this discrepancy we study the robustness of the mass spectrum derived using the Clumpfind algorithm. Both 2D and 3D Clumpfind versions are tested, using 850 ÎŒ\mum dust emission and 13CO spectral-line observations of Perseus, respectively. The effect of varying threshold is not important, but varying stepsize produces a different effect for 2D and 3D cases. In the 2D case, where emission is relatively isolated (associated with only the densest peaks in the cloud), the mass spectrum variability is negligible compared to the mass function fit uncertainties. In the 3D case, however, where the 13CO emission traces the bulk of the molecular cloud, the number of clumps and the derived mass spectrum are highly correlated with the stepsize used. The distinction between "2D" and "3D" here is more importantly also a distinction between "sparse" and "crowded" emission. In any "crowded" case, Clumpfind should not be used blindly to derive mass functions. Clumpfind's output in the "crowded" case can still offer a statistical description of emission useful in inter-comparisons, but the clump-list should not be treated as a robust region decomposition suitable to generate a physically-meaningful mass function. We conclude that the 13CO mass spectrum depends on the observations resolution, due to the hierarchical structure of MC.Comment: 5 pages, 3 figures. Accepted for publication in ApJ Letter

    An Ammonia Spectral Atlas of Dense Cores in Perseus

    Full text link
    We present ammonia observations of 193 dense cores and core candidates in the Perseus molecular cloud made using the Robert F. Byrd Green Bank Telescope. We simultaneously observed the NH3(1,1), NH3(2,2), CCS (2_1 -> 1_0) and CC34S (2_1 -> 1_0) transitions near 23 GHz for each of the targets with a spectral resolution of dv ~ 0.024 km/s. We find ammonia emission associated with nearly all of the (sub)millimeter sources as well as at several positions with no associated continuum emission. For each detection, we have measured physical properties by fitting a simple model to every spectral line simultaneously. Where appropriate, we have refined the model by accounting for low optical depths, multiple components along the line of sight and imperfect coupling to the GBT beam. For the cores in Perseus, we find a typical kinetic temperature of T=11 K, a typical column density of N(NH3)~ 10^14.5 /cm^2 and velocity dispersions ranging from sigma_v = 0.07 km/s to 0.7 km/s. However, many cores with velocity dispersions > 0.2 km/s show evidence for multiple velocity components along the line of sight.Comment: 19 pages; Accepted to ApJS; version with high resolution figures available at http://www.cfa.harvard.edu/COMPLETE/papers/nh3-paper1.pdf ; online data at http://www.cfa.harvard.edu/COMPLETE/data_html_pages/GBT_NH3.htm

    Giant Molecular Clouds in M33 - I. BIMA All Disk Survey

    Full text link
    We present the first interferometric CO(J=1->0) map of the entire H-alpha disk of M33. The 13" diameter synthesized beam corresponds to a linear resolution of 50 pc, sufficient to distinguish individual giant molecular clouds (GMCs). From these data we generated a catalog of 148 GMCs with an expectation that no more than 15 of the sources are spurious. The catalog is complete down to GMC masses of 1.5 X 10^5 M_sun and contains a total mass of 2.3 X 10^7 M_sun. Single dish observations of CO in selected fields imply that our survey detects ~50% of the CO flux, hence that the total molecular mass of M33 is 4.5 X 10^7 M_sun, approximately 2% of the HI mass. The GMCs in our catalog are confined largely to the central region (R < 4 kpc). They show a remarkable spatial and kinematic correlation with overdense HI filaments; the geometry suggests that the formation of GMCs follows that of the filaments. The GMCs exhibit a mass spectrum dN/dM ~ M^(-2.6 +/- 0.3), considerably steeper than that found in the Milky Way and in the LMC. Combined with the total mass, this steep function implies that the GMCs in M33 form with a characteristic mass of 7 X 10^4 M_sun. More than 2/3 of the GMCs have associated HII regions, implying that the GMCs have a short quiescent period. Our results suggest the rapid assembly of molecular clouds from atomic gas, with prompt onset of massive star formation.Comment: 19 pages, Accepted for Publication in the Astrophysical Journal Supplemen

    Resolving Giant Molecular Clouds in NGC 300: : A First Look with the Submillimeter Array

    Get PDF
    Christopher M. Faesi, et al, 'RESOLVING GIANT MOLECULAR CLOUDS IN NGC 300: A FIRST LOOK WITH THE SUBMILLIMETER ARRAY', The Astrophysical Journal, Vol. 821(2) (16 pp), April 2016. doi:10.3847/0004-637X/821/2/125. © 2016. The American Astronomical Society. All rights reserved.We present the first high angular resolution study of giant molecular clouds (GMCs) in the nearby spiral galaxy NGC 300, based on observations from the Submillimeter Array (SMA). We target eleven 500 pc-sized regions of active star formation within the galaxy in the CO(J=2-1) line at 40 pc spatial and 1 km/s spectral resolution and identify 45 individual GMCs. We characterize the physical properties of these GMCs, and find that they are similar to GMCs in the disks of the Milky Way and other nearby spiral galaxies. For example, the GMC mass spectrum in our sample has a slope of 1.80+/-0.07. Twelve clouds are spatially resolved by our observations, of which ten have virial mass estimates that agree to within a factor of two with mass estimates derived directly from CO integrated intensity, suggesting that the majority of these GMCs are bound. The resolved clouds show consistency with Larson's fundamental relations between size, linewidth, and mass observed in the Milky Way. We find that the linewidth scales with the size as DeltaV ~ R^(0.52+/-0.20), and the median surface density in the subsample is 54 Msun/pc^(-2). We detect 13CO in four GMCs and find a mean 12CO/13CO flux ratio of 6.2. Our interferometric observations recover between 30% and 100% of the integrated intensity from the APEX single dish CO observations of Faesi et al. 2014, suggesting the presence of low-mass GMCs and/or diffuse gas below our sensitivity limit. The fraction of APEX emission recovered increases with the SMA total intensity as well as with the star formation rate.Peer reviewe

    The Bolocam Galactic Plane Survey. XIV. Physical Properties of Massive Starless and Star Forming Clumps

    Full text link
    We sort 46834683 molecular clouds between 10∘<ℓ<65∘10^\circ< \ell <65^\circ from the Bolocam Galactic Plane Survey based on observational diagnostics of star formation activity: compact 7070 ÎŒm\mu{\rm m} sources, mid-IR color-selected YSOs, H2O{\rm H_2O} and CH3OH{\rm CH_3OH} masers, and UCHII regions. We also present a combined NH3{\rm NH_3}-derived gas kinetic temperature and H2O{\rm H_2O} maser catalog for 17881788 clumps from our own GBT 100m observations and from the literature. We identify a subsample of 22232223 (47.5%47.5\%) starless clump candidates, the largest and most robust sample identified from a blind survey to date. Distributions of flux density, flux concentration, solid angle, kinetic temperature, column density, radius, and mass show strong (>1>1 dex) progressions when sorted by star formation indicator. The median starless clump candidate is marginally sub-virial (α∌0.7\alpha \sim 0.7) with >75%>75\% of clumps with known distance being gravitationally bound (α<2\alpha < 2). These samples show a statistically significant increase in the median clump mass of ΔM∌170−370\Delta M \sim 170-370 M⊙_\odot from the starless candidates to clumps associated with protostars. This trend could be due to (i) mass growth of the clumps at M˙∌200−440\dot{M}\sim200-440 Msun Myr−1^{-1} for an average free-fall 0.80.8 Myr time-scale, (ii) a systematic factor of two increase in dust opacity from starless to protostellar phases, (iii) and/or a variation in the ratio of starless to protostellar clump lifetime that scales as ∌M−0.4\sim M^{-0.4}. By comparing to the observed number of CH3OH{\rm CH_3OH} maser containing clumps we estimate the phase-lifetime of massive (M>103M>10^3 M⊙_\odot) starless clumps to be 0.37±0.08 Myr (M/103 M⊙)−10.37 \pm 0.08 \ {\rm Myr} \ (M/10^3 \ {\rm M}_\odot)^{-1}; the majority (M<450M<450 M⊙_\odot) have phase-lifetimes longer than their average free-fall time.Comment: Accepted for publication in ApJ; 33 pages; 22 figures; 7 table

    CARMA Large Area Star Formation Survey: Observational Analysis of Filaments in the Serpens South Molecular Cloud

    Get PDF
    We present the N2H+(J=1-0) map of the Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey (CLASSy). The observations cover 250 square arcminutes and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km/s, and they can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N2H+ emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N2H+ filaments comprise a single observed dust continuum filament. The difference between the dust and gas filament widths casts doubt on Herschel ability to resolve the Serpens South filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence.Comment: 12 pages, 4 figures, published in ApJL (July 2014

    The Role of Pressure in GMC Formation II: The H_2 - Pressure Relation

    Get PDF
    We show that the ratio of molecular to atomic gas in galaxies is determined by hydrostatic pressure and that the relation between the two is nearly linear. The pressure relation is shown to be good over three orders of magnitude for 14 galaxies including dwarfs, HI-rich, and H_2-rich galaxies as well as the Milky Way. The sample spans a factor of five in mean metallicity. The rms scatter of individual points of the relation is only about a factor of two for all the galaxies, though some show much more scatter than others. Using these results, we propose a modified star formation prescription based on pressure determining the degree to which the ISM is molecular. The formulation is different in high and low pressure regimes defined by whether the gas is primarily atomic or primarily molecular. This formulation can be implemented in simulations and provides a more appropriate treatment of the outer regions of spiral galaxies and molecule-poor systems such as dwarf irregulars and damped Lyman-alpha systems.Comment: 14 pages, 7 figures, Accepted to the Astrophysical Journa

    Giant Molecular Clouds in the Early-type Galaxy NGC 4526

    Get PDF
    D. Utomo, et al., “Giant Molecular Clouds in the Early-Type Galaxy NGC 4526”, The Astrophysical Journal, Vol. 803(1), April 2015. © 2015. The American Astronomical Society. All rights reserved.We present a high spatial resolution (≈20 pc) of 12CO(2 −1) observations of the lenticular galaxy NGC 4526. We identify 103 resolved giant molecular clouds (GMCs) and measure their properties: size R, velocity dispersion σv, and luminosity L. This is the first GMC catalog of an early-type galaxy. We find that the GMC population in NGC 4526 is gravitationally bound, with a virial parameter α ∌ 1. The mass distribution, dN/dM ∝ M−2.39 ± 0.03, is steeper than that for GMCs in the inner Milky Way, but comparable to that found in some late-type galaxies. We find no size–line width correlation for the NGC 4526 clouds, in contradiction to the expectation from Larson’s relation. In general, the GMCs in NGC 4526 are more luminous, denser, and have a higher velocity dispersion than equal-size GMCs in the Milky Way and other galaxies in the Local Group. These may be due to higher interstellar radiation field than in the Milky Way disk and weaker external pressure than in the Galactic center. In addition, a kinematic measurement of cloud rotation shows that the rotation is driven by the galactic shear. For the vast majority of the clouds, the rotational energy is less than the turbulent and gravitational energy, while the four innermost clouds are unbound and will likely be torn apart by the strong shear at the galactic center. We combine our data with the archival data of other galaxies to show that the surface density ÎŁ of GMCs is not approximately constant, as previously believed, but varies by ∌3 orders of magnitude. We also show that the size and velocity dispersion of the GMC population across galaxies are related to the surface density, as expected from the gravitational and pressure equilibrium, i.e., σv R−1/2 ∝ ÎŁ1/2.Peer reviewe
    • 

    corecore