211 research outputs found

    Indicators of central sensitization in chronic neuropathic pain after spinal cord injury

    Full text link
    BACKGROUND Central sensitization is considered a key mechanism underlying neuropathic pain (NP) after spinal cord injury (SCI). METHODS Two novel proxies for central sensitization were investigated in thoracic SCI subjects with (SCI-NP) and without NP (SCI-nonNP) compared to healthy controls (HC). Specifically, temporal summation of pain (TSP) was investigated by examining pain ratings during a 2-min tonic heat application to the volar forearm. Additionally, palmar heat-induced sympathetic skin responses (SSR) were recorded in order to reveal changes in pain-autonomic interaction above the lesion level. Pain extent was assessed as the percentage of the body area and the number of body regions being affected by NP. RESULTS Enhanced TSP was observed in SCI-NP (+66%) compared to SCI-nonNP (-75%, p = 0.009) and HC (-59%, p = 0.021). In contrast, no group differences were found (p = 0.685) for SSR habituation. However, pain extent in SCI-NP was positively correlated with deficient SSR habituation (body area: r = 0.561, p = 0.024; body regions: r = 0.564, p = 0.023). CONCLUSIONS These results support the value of TSP and heat-induced SSRs as proxies for central sensitization in widespread neuropathic pain syndromes after SCI. Measures of pain-autonomic interaction emerged as a promising tool for the objective investigation of sensitized neuronal states in chronic pain conditions. SIGNIFICANCE We present two surrogate readouts for central sensitization in neuropathic pain following SCI. On the one hand, temporal summation of tonic heat pain is enhanced in subjects with neuropathic pain. On the other hand, pain-autonomic interaction reveals potential advanced measures in chronic pain, as subjects with a high extent of neuropathic pain showed diminished habituation of pain-induced sympathetic measures. A possible implication for clinical practice is constituted by an improved assessment of neuronal hyperexcitability potentially enabling mechanism-based treatment

    On the Short Distance Part of the QCD Anomaly Contribution to the b --> s eta' Amplitude

    Full text link
    In addressing the B --> eta' K puzzle, there has been a considerable hope in the literature to resolve it by the QCD anomaly contribution to the b --> s eta' amplitude. This contribution corresponds to the electroweak b --> s g* g* transition followed by the off-shell gluon fusion g* g* --> eta'. In the present paper we perform a critical reassessment of this issue. We show that for the hard virtual gluons in a loop there is a well defined short distance amplitude corresponding to a remnant of the QCD anomaly. However, we find that it cannot account for the measured amplitude. In addition, we point out that the reduction of the gluon fusion vertex for the off-shell gluons is compensated by an absence of the claimed suppression in the electroweak vertex, and that some nonperturbative contributions related to the QCD anomaly may still be viable in explaining the physical B --> eta' K amplitude.Comment: 11 pages, 4 figures, LaTeX + elsart.cls, to appear in Phys. Lett.

    Intra- and inter-session reliability of electrical detection and pain thresholds of cutaneous and muscle primary afferents in the lower back of healthy individuals.

    Get PDF
    To advance evidence-based practice and targeted treatments of low back pain (LBP), a better pathophysiological understanding and reliable outcome measures are required. The processing of nociceptive information from deeper somatic structures (e.g., muscle, fascia) might play an essential role in the pathophysiology of LBP. In this study, we measured the intra- and inter-session reliability of electrical detection and pain thresholds of cutaneous and muscle primary afferents of the lower back. Twenty healthy participants attended two study visits separated by 27.7 ± 1.7 days. To determine the location-specific electrical detection threshold (EDT) and pain threshold (EPT), needle electrodes were inserted in the epidermal layer over, and in the lumbar erector spinae muscle. Additionally, established quantitative sensory testing (QST) parameters were assessed. Reliability was determined by differences between measurements, intraclass correlation coefficients (ICC2,1), Bland-Altman plots, and standard error of measurement (SEM). Correspondence between QST parameters and electrical thresholds was assessed using Pearson's correlation. Except for cutaneous EPT, no significant (p ≤ 0.05) intra- and inter-session differences were observed. Excellent intra-session reliability was shown for cutaneous and intramuscular electrical stimulations and all QST parameters (ICC: 0.76-0.93). Inter-session reliabilities were good (ICC: 0.74-0.75) except for electrical stimulations (ICC: 0.08-0.36). Limits of agreement and SEM were higher for inter-session than intra-session. A medium to strong relationship was found between electrical and mechanical/pressure pain thresholds. In conclusion, cutaneous and intramuscular electrical stimulation will potentially close an important diagnostic gap regarding the selective examination of deep tissue afferents and provide location-specific information for the excitability of non-nociceptive and nociceptive afferents

    The strategic impact of META-NET on the regional, national and international level

    Get PDF
    This article provides an overview of the dissemination work carried out in META-NET from 2010 until 2015; we describe its impact on the regional, national and international level, mainly with regard to politics and the funding situation for LT topics. The article documents the initiative's work throughout Europe in order to boost progress and innovation in our field.Peer ReviewedPostprint (author's final draft

    Pain-autonomic measures reveal nociceptive sensitization in complex regional pain syndrome

    Full text link
    BACKGROUND Allodynia and hyperalgesia are common signs in individuals with complex regional pain syndrome (CRPS), mainly attributed to sensitization of the nociceptive system. Appropriate diagnostic tools for the objective assessment of such hypersensitivities are still lacking, which are essential for the development of mechanism-based treatment strategies. OBJECTIVES This study investigated the use of pain-autonomic readouts to objectively detect sensitization processes in CRPS. METHODS Twenty individuals with chronic CRPS were recruited for the study alongside 16 age- and sex-matched healthy controls (HC). All individuals underwent quantitative sensory testing and neurophysiological assessments. Sympathetic skin responses (SSRs) were recorded in response to 15 pinprick and 15 noxious heat stimuli of the affected (CRPS hand/foot) and a control area (contralateral shoulder/hand). RESULTS Individuals with CRPS showed increased mechanical pain sensitivity and increased SSR amplitudes compared with HC in response to pinprick and heat stimulation of the affected (p  0.05). Habituation of pinprick-induced SSRs was reduced in CRPS compared to HC in both the affected (p = 0.018) and slightly in the control area (p = 0.048). Habituation of heat-induced SSR was reduced in CRPS in the affected (p = 0.008), but not the control area (p = 0.053). CONCLUSIONS This is the first study demonstrating clinical evidence that pain-related autonomic responses may represent objective tools to quantify sensitization processes along the nociceptive neuraxis in CRPS (e.g. widespread hyperexcitability). Pain-autonomic readouts could help scrutinize mechanisms underlying the development and maintenance of chronic pain in CRPS and provide valuable metrics to detect mechanism-based treatment responses in clinical trials. SIGNIFICANCE This study provides clinical evidence that autonomic measures to noxious stimuli can objectively detect sensitization processes along the nociceptive neuraxis in complex regional pain syndrome (CRPS) (e.g. widespread hyperexcitability). Pain-autonomic readouts may represent valuable tools to explore pathophysiological mechanisms in a variety of pain patients and offer novel avenues to help guide mechanism-based therapeutic strategies

    Anti- and Pro-Nociceptive mechanisms in neuropathic pain after human spinal cord injury

    Full text link
    BACKGROUND Deficient endogenous pain modulation and increased nociceptive excitability are key features of central sensitization and can be assessed in humans by conditioned pain modulation (CPM, anti-nociceptive) and temporal summation of pain (TSP, pro-nociceptive), respectively. This study aimed to investigate these measures as proxies for central sensitization in subjects with chronic neuropathic pain (NP) after spinal cord injury (SCI). METHODS In paraplegic subjects with NP (SCI-NP; n = 17) and healthy controls (HC; n = 17), parallel and sequential sham-controlled CPM paradigms were performed using pressure pain threshold at the hand, that is, above lesion level, as test stimulus. The conditioning stimulus was a noxious cold (verum) or lukewarm water bath (sham) applied contralaterally. Regarding pro-nociceptive mechanisms, a TSP protocol with individually-adjusted pressure pain stimuli at the thenar eminence was used. CPM and TSP magnitudes were related to intensity and spatial extent of spontaneous NP. RESULTS Neither the parallel nor sequential sham-controlled CPM paradigm showed any significant inhibition of above-level pressure pain thresholds for SCI-NP or HC. Accordingly, no group difference in CPM capacity was found, however, subjects with more intense spontaneous NP showed lower inhibitory CPM capacity. TSP was observed for both groups but was not enhanced in SCI-NP. CONCLUSIONS Our results do not support altered above-level anti- or pro-nociceptive mechanisms in SCI-NP compared with HC; however, they also highlight the relevance of spontaneous NP intensity with regards to the capacity of endogenous pain modulation in SCI subjects. SIGNIFICANCE Central sensitization encompasses deficient endogenous pain modulation and increased nociceptive excitability. These two mechanisms can be assessed in humans by conditioned pain modulation and temporal summation of pain, respectively. Our data demonstrates a lack of descending pain inhibition only in subjects with severe neuropathic pain which may hint towards central sensitization at spinal and/or supra-spinal levels. Disentangling the mechanisms of endogenous pain modulation and neuronal hyperexcitability might improve mechanism-based treatment of neuropathic pain in subjects with spinal cord injury

    Incorporating an error corpus into a spellchecker for Maltese

    Get PDF
    This paper discusses the ongoing development of a new Maltese spell checker, highlighting the methodologies which would best suit such a language. We thus discuss several previous attempts, highlighting what we believe to be their weakest point: a lack of attention to context. Two developments are of particular interest, both of which concern the availability of language resources relevant to spellchecking: (i) the Maltese Language Resource Server (MLRS) which now includes a representative corpus of c. 100M words extracted from diverse documents including the Maltese Legislation, press releases and extracts from Maltese web-pages and (ii) an extensive and detailed corpus of spelling errors that was collected whilst part of the MLRS texts were being prepared. We describe the structure of these resources as well as the experimental approaches focused on context that we are now in a position to adopt. We describe the framework within which a variety of different approaches to spellchecking and evaluation will be carried out, and briefly discuss the first baseline system we have implemented. We conclude the paper with a roadmap for future improvements.peer-reviewe

    Directional recordings of somatosensory evoked potentials from the sensory thalamus in chronic poststroke pain patients.

    Get PDF
    OBJECTIVE The aim of this feasibility study was to investigate the properties of median nerve somatosensory evoked potential (SEPs) recorded from segmented Deep Brain Stimulation (DBS) leads in the sensory thalamus (VP) and how they relate to clinical and anatomical findings. METHODS We analyzed four patients with central post-stroke pain and DBS electrodes placed in the VP. Median nerve SEPs were recorded with referential and bipolar montages. Electrode positions were correlated with thalamus anatomy and tractography-based medial lemniscus. Early postoperative clinical paresthesia mapping was performed by an independent pain nurse. Finally, we performed frequency and time-frequency analyses of the signals. RESULTS We observed differences of SEP amplitudes recorded along different directions in the VP. SEP amplitudes did not clearly correlate to both atlas-based anatomical position and fiber-tracking results of the medial lemniscus. However, the contacts of highest SEP amplitude correlated with the contacts of lowest effect-threshold to induce paraesthesia. CONCLUSIONS SEP recordings from directional DBS leads offer additional information about the neurophysiological (re)organization of the sensory thalamus. SIGNIFICANCE Directional recordings of thalamic SEPs bear the potential to assist clinical decision-making in DBS for pain

    Priming of the autonomic nervous system after an experimental human pain model

    Full text link
    Modulated autonomic responses to noxious stimulation have been reported in experimental and clinical pain. These effects are likely mediated by nociceptive sensitization, but may also, more simply reflect increased stimulus-associated arousal. To disentangle between sensitization- and arousal-mediated effects on autonomic responses to noxious input, we recorded sympathetic skin responses (SSRs) in response to 10 pinprick and heat stimuli before (PRE) and after (POST) an experimental heat pain model to induce secondary hyperalgesia (EXP) and a control model (CTRL) in 20 healthy females. Pinprick and heat stimuli were individually adapted for pain perception (4/10) across all assessments. Heart rate, heart rate variability, and skin conductance level (SCL) were assessed before, during, and after the experimental heat pain model. Both pinprick- and heat-induced SSRs habituated from PRE to POST in CTRL, but not EXP (P = 0.033). Background SCL (during stimuli application) was heightened in EXP compared with CTRL condition during pinprick and heat stimuli (P = 0.009). Our findings indicate that enhanced SSRs after an experimental pain model are neither fully related to subjective pain, as SSRs dissociated from perceptual responses, nor to nociceptive sensitization, as SSRs were enhanced for both modalities. Our findings can, however, be explained by priming of the autonomic nervous system during the experimental pain model, which makes the autonomic nervous system more susceptible to noxious input. Taken together, autonomic readouts have the potential to objectively assess not only nociceptive sensitization but also priming of the autonomic nervous system, which may be involved in the generation of distinct clinical pain phenotypes.NEW & NOTEWORTHY The facilitation of pain-induced sympathetic skin responses observed after experimentally induced central sensitization is unspecific to the stimulation modality and thereby unlikely solely driven by nociceptive sensitization. In addition, these enhanced pain-induced autonomic responses are also not related to higher stimulus-associated arousal, but rather a general priming of the autonomic nervous system. Hence, autonomic readouts may be able to detect generalized hyperexcitability in chronic pain, beyond the nociceptive system, which may contribute to clinical pain phenotypes

    In vivo evidence of remote neural degeneration in the lumbar enlargement after cervical injury

    Get PDF
    OBJECTIVE To characterize remote secondary neurodegeneration of spinal tracts and neurons below a cervical spinal cord injury (SCI) and its relation to the severity of injury, the integrity of efferent and afferent pathways, and clinical impairment. METHODS A comprehensive high-resolution MRI protocol was acquired in 17 traumatic cervical SCI patients and 14 controls at 3T. At the cervical lesion, a sagittal T2-weighted scan provided information on the width of preserved midsagittal tissue bridges. In the lumbar enlargement, high-resolution T2*-weighted and diffusion-weighted scans were used to calculate tissue-specific cross-sectional areas and diffusion indices, respectively. Regression analyses determined associations between MRI readouts and the electrophysiologic and clinical measures. RESULTS At the cervical injury level, preserved midsagittal tissue bridges were present in the majority of patients. In the lumbar enlargement, neurodegeneration-in terms of macrostructural and microstructural MRI changes-was evident in the white matter and ventral and dorsal horns. Patients with thinner midsagittal tissue bridges had smaller ventral horn area, higher radial diffusivity in the gray matter, smaller motor evoked potential amplitude from the lower extremities, and lower motor score. In addition, smaller width of midsagittal tissue bridges was also associated with smaller tibialis sensory evoked potential amplitude and lower light-touch score. CONCLUSIONS This study shows extensive tissue-specific cord pathology in infralesional spinal networks following cervical SCI, its magnitude relating to lesion severity, electrophysiologic integrity, and clinical impairment of the lower extremity. The clinical eloquence of remote neurodegenerative changes speaks to the application of neuroimaging biomarkers in diagnostic workup and planning of clinical trials
    • …
    corecore