
Incorporating an Error Corpus
into a Spellchecker for Maltese

Mike Rosner, Albert Gatt, Jan Joachimsen, Andrew Attard

University of Malta, University of Malta, University of Malta, University of Malta
mike.rosner@um.edu.mt, University of Malta, University of Malta, University of Malta

Abstract
This paper discusses the ongoing development of a new Maltese spell checker, highlighting the methodologies which would best
suit such a language. We thus discuss several previous attempts, highlighting what we believe to be their weakest point: a lack of
attention to context. Two developments are of particular interest, both of which concern the availability of language resources relevant
to spellchecking: (i) the Maltese Language Resource Server (MLRS) which now includes a representative corpus of c. 100M words
extracted from diverse documents including the Maltese Legislation, press releases and extracts from Maltese web-pages and (ii) an
extensive and detailed corpus of spelling errors that was collected whilst part of the MLRS texts were being prepared. We describe
the structure of these resources as well as the experimental approaches focused on context that we are now in a position to adopt. We
describe the framework within which a variety of different approaches to spellchecking and evaluation will be carried out, and briefly
discuss the first baseline system we have implemented. We conclude the paper with a roadmap for future improvements.

Keywords: Spellchecking, Maltese, Benchmarking

1. Introduction
Spellchecking is one of those problems which tends to be
neglected under the assumption that it is easy to solve. As
it turns out, even for highly resourced languages, this as-
sumption is false. Accurate spellchecking is surprisingly
hard, depending not only upon a comprehensive wordlist,
but on as yet undetermined amounts of contextual informa-
tion. For Maltese, it is particularly hard not only because
resources are lacking, but also because of its mixed nature
that incorporates Semitic and Romance substrates. One
consequence is that word formation is complex incorporat-
ing both concatenative and non-concatenative morphologi-
cal processes. In addition, there are many words in Maltese
that admit spelling variants, partly as a result of the higher
than average number of loan words that are found in Mal-
tese.

2. Background
2.1. Maltese Word Formation
Being a Semitic language, Maltese has a lot of word forms
which are derived and inflected non-concatenatively, i.e.,
word forms are changed internally according to the Semitic
root-and-pattern structure: lexemes are derived from a
mostly three-consonantal root, e.g. k-t-b for everything
connected to writing. The derivation of specific lexemes
like the verb “to write” or the noun “writer” of this root
takes place by the application of certain patterns to the root
consonants. The form kiteb “he wrote”, for example, has
the pattern 1v2v3, in which the numbers stand for the root
consonants and v for the vowels between them. The agent
noun kittieb “writer” is formed by applying the agent noun
pattern 1v22ie3, in which the second root consonant is dou-
bled and the vowel positions are filled with a short vowel
and the long vowel ie, respectively. The following exam-
ples under 1 show several inflected verb forms of kiteb (ex-
amples (a)-(c)) and some nouns (examples (d)-(e)), all of

which are based on the root k-t-b. The phonological tran-
scriptions in IPA are not important at this stage; we will
come back to them in section 2.2..

(1) (a) kiteb “he wrote” /"kI.tEp/

(b) kitbu “they wrote” /"kId.bU/

(c) jiktbu “they write” /"jIg.dbU/

(d) kittieb “writer” /kIt."tI:p/

(e) ktieb “book” /"ktI:p/; kotba “books” /"kOd.b5/

As a contact language between Siculo-Arabic, Romance
and English, Maltese also contains a large number of loan
words, most of which are incorporated into the Semitic non-
concatenative morphology as stem-based forms. The ex-
amples under 2 show verb forms based on the stem ddajvj-
(derived from English dive), which are not changed inter-
nally:

(2) (a) iddajvja “he dived” /Id."d5I.vj5/

(b) iddajvjaw “they dived” /Id.d5I."vj5U/

(c) jiddajvjaw “they dive” /jId.d5I."vj5U/

Thus, if one wants to incorporate morphological models
into a spellchecker for Maltese, one has to take into ac-
count both the root-and-pattern-based and stem-based sys-
tem. The next subsection will present some language spe-
cific spelling rules of Maltese which could be implemented
in a rule-based spellchecker.

2.2. Some Specific Spelling Rules of Maltese
In general, spelling rules in an orthography are convention-
alised spellings options, which are based on several linguis-
tic and non-linguistic principles. Thus, while some rules
are based on the phonetics, phonology and morphology of
a language, other rules are rather based on “visual” princi-
ples, as e.g. the avoidance of trigeminates, i.e. consonant

743

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/93184055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


clusters made up of three of the same consonant1, or ety-
mological spelling rules. Since these principles can be in
conflict with each other (e.g. phonological vs. morpholog-
ical spelling options), an orthography system has to find a
way to give some rules priority over others in a consistent
way so that they “together in a hierarchy create stability”
(Il-Kunsill Nazzjonali tal-Ilsien Malti, 2008, 2).
In this section, we will concentrate on some spelling rules
based on phonological, morphological and etymological
principles.
Following the phonological principle, every consonant
phoneme is represented by one grapheme in the Maltese
orthography. Short and long vowels mostly “share” their
graphemes (i.e., a stands for both [5] and [5:]), but the vowel
length can be determined by the reader from a general stress
rule (Akkademja tal-Malti, 2001, 145-148).
However, as can be seen in example 1, the orthographical
forms do not reflect purely the phonological forms. Com-
paring the orthographic representations with the phonolog-
ical transcriptions, it becomes clear that the orthography
does not represent the phenomenon called regressive as-
similation. By this phonological filter the last obstruent in
a sequence restricts the occurrence of a directly preceding
obstruent in terms of the feature [+/- voice]: if the last ob-
struent in a sequence is voiceless, a directly preceding ob-
struent must be voiceless as well. If the last obstruent in a
sequence is voiced, its directly preceding neighbour must
be voiced, too (see examples (b), (c) and (e)). In word-final
position, the pause after a final obstruent has the same ef-
fect as a voiceless obstruent, which is why in word-final
coda position only voiceless obstruents can be found (see
examples (a), (d), (e)).
Thus, in the orthographic forms, the phonological spelling
rule is overridden by another principle, i.e., morphologi-
cal constancy. It demands the spelling of word forms in
such a way that they can be identified as members of one
paradigm. For Semitic root-based forms as in 1, the root
consonants (and their patterns) provide the common de-
nominator by which the reader can recognize the underly-
ing lexical form of the paradigm. For non-Semitic stem-
based forms (see example 2), the underlying lexical form
consists of a continuous stem.
A special case of morphological constancy in Maltese or-
thography is the etymological spelling of my, which repre-
sents a historic fricative that disappeared in most cases but
left phonological traces on neighbouring vowels by length-
ening them. Moreover, verbs containing gh̄ as their second
root consonant exhibit a stress pattern that differs from reg-
ular verbs and resembles verbs containing a sonorant (l, r, m
or n) as their second root consonant (Fabri, 2009, 12). The
examples under 3 illustrate these differences. While nik-
tbu under (a) has the disyllabic pattern "X.x, the respective
forms nisirqu under (b) and nilagh̄bu under (c) have the
trisyllabic pattern x."X.x. For nisirqu, this pattern is trig-

1The preposition minn “from, by” is assimilated and reduced
before the article l- to mill-, as in kien intbagh̄at mill-Ministru “he
was sent by the Minister”. Before a noun that starts with l, the
combination of preposition and article is reduced to mil-, as in
joh̄roġ mil-labirint “he went out from the labyrinth” (not *mill-
labirint).

gered by a phonological rule which prohibits complex syl-
lable onsets consisting of l/r/m/n as first and a consonant as
the second element and inserts a prothetic vowel i between
them. For nilagh̄bu, the situation is a bit more complex. In
the phonological form /nI."l5:.bU/, the trisyllabic stress pat-
tern has survived while the consonant triggering it has dis-
appeared. Following the etymological principle, this con-
sonant is nevertheless written (as gh̄) in order to preserve
the triconsonantal root l-gh̄-b. Also, following the princi-
ple of morphological constancy, this“virtual” consonant is
written in the correct position where it formerly appeared.
This allows the reader to correctly recognize the underlying
root-and-pattern structure ni1v23u.

(3) (a) kiteb ["kI.tEp] 1v2v3 “he wrote”, niktbu
/"nIg.dbU/ ni123u “we write”, nikteb /"nIk.tEp/
ni12v3 “I write”

(b) seraq /"sE.r5P/ 1v2v3 “he stole”, nisirqu
/nI."sIr.PU/ ni1v23u “we steal”, nisraq /"nIs.r5P/
ni12v3 “I steal”

(c) lagh̄ab /"l5:p/ 1v2v3 “he played”, nilagh̄bu
/nI."l5:.bU/ ni1v23u “we play”, nilgh̄ab /"nI.l5:p/
ni12v3 “I play”

For the examples given so far, a rule-based spellchecker
would first have to detect whether a certain word form is
a root-based or stem-based form. This could be done by
an (annotated) word list or lexicon. Secondly, it will have
to parse the internal structure of a word (e.g. niktbu as
ni123u) and compare it against a list of verbal paradigms
with abstracted root-and-pattern structures. For verbs with
“regular” consonants (as kiteb), if the respective structure
ni123u is found in the list, the word form will be evaluated
as correct. An incorrect form *nikitbu will be recognised
as incorrect, since the pattern *ni1v23u is not part of the
relevant paradigm2. For verbs, however, that have l, r, m,
n and gh̄ in the place of 2 in the parsed pattern, a struc-
ture like ni1v23u would be possible. Therefore, the pars-
ing process of the words would also need to include a rule
that assigns these word forms to that specific verb class and
evaluates the pattern structure of the candidate against the
correct paradigm.

2.3. Maltese Spell Checking to date
There have been a number of previous attempts at devel-
oping a spellchecker for Maltese, but a good solution has
so far proved elusive. Mangion (Mangion, 1999) imple-
mented a set of rudimentary editing operations which were
applied to a small, manually-created lexicon to see if they
matched a candidate word. The main weakness was the
small size of the lexicon, and to counter this, Mizzi (Mizzi,
2000) developed a lexicon-free system based on statistical
n-gram language model which rejected words containing

2At this stage, we do not consider the recognition of possi-
ble similar patterns of other verb classes which could be offered
as correct options instead of the incorrectly spelled form. Thus
it might be possible to recognise *nikitbu as the inversion of in-
to ni- in the existing form inkitbu “they were written”, where in-
is not the 1st person prefix for “we” but a passive marker of the
derivative passive paradigm.

744



n-grams whose probability was below threshold. This suf-
fered a different problem: poor precision and recall. The
best system to date is that implemented by R. Casha on be-
half of the local Linux user group. This uses a large, partly
rule-generated wordlist containing some 800K word types,
employs the Unix aspell algorithm can be incorporated
as a plug-in into various open-source tools such as Firefox
and Open Office. It is deployed over the web3.
This last system ticks many of the boxes but as a matter
of fact is not very widely used, despite its availability and
the clear need for a spellchecker. We believe that the main
reason is that its performance simply isn’t up to scratch,
but this assertion remains a hunch, since its performance
has never been systematically established.

3. Aims and Objectives
Given the shortcomings highlighted in the last section, we
intend to develop a new spellchecker for Maltese with the
following objectives in mind:

• Wide coverage of the language. The system has to be
of clear benefit for the ordinary user and hence has to
be general purpose and not oriented toward specialist
document types.

• Accuracy. The system must offer a useful level of
accuracy according to objectively formulated criteria.

• Ease of integration. We are not aiming for a labora-
tory prototype, but a system that is open source and
easy to integrate into commercial software (such as
Microsoft Word).

4. New Resources
Over the last couple of years, an important step towards
developing language technology resources for Maltese has
been the development of a corpus of Maltese texts, which
is now publicly available from the Maltese Language Re-
source Server (MLRS)4. The corpus, which consists of
written text, was collected opportunistically from publicly
available documents and web pages, and currently contains
ca. 100m tokens, falling into the following general topic ar-
eas (i) academic writing; (ii) laws; (iii) literature and criti-
cism; (iv) transcribed parliamentary debates; (v) press; (vi)
speeches (written to be spoken); (vii) miscellaneous texts
from the web, including blogs and wikipedia articles.
Currently, corpus texts have structural markup (at para-
graph, sentence and token level) and work is underway to
complete a part-of-speech tagged version, to be released
shortly. Meanwhile, the corpus itself functions as an invalu-
able resource for the development of spellchecking technol-
ogy.

4.1. Error Corpus
During the process of opportunistic text collection for the
MLRS corpus, one of the major problems encountered was
the variability in the quality of the orthography of the var-
ious texts. First, some texts are written without using

3http://linux.org.mt/projects/spellcheck/
4See: http://mlrs.research.um.edu.mt

unicode-compliant Maltese characters (for example, a word
like h̄aġa ‘thing/object’ might be written as haga). This is
a common problem with legacy data in Maltese produced
prior to the widespread introduction of the unicode stan-
dard. Second, there is widespread variation among authors
on the spelling of borrowed words. While some of these
are well established and now have a ‘Maltese’ spelling
(e.g. futbol ‘football’), several others are either spelt using
the original foreign (often, English) spelling, or adapted to
Maltese orthography on an ad hoc basis. This is a situation
which is expected to be rectified to some extent in the near
future, given the recent publication of a set of guidelines
for the spelling of foreign borrowings in Maltese. Finally,
there are of course spelling errors of the more usual kind,
due to typos etc.

Figure 1: Web interface for the spelling correction tool

As a result of these issues, we have undertaken a large-
scale spelling correction exercise, which is now close to
completion, and which involved manually inspecting ev-
ery alphanumeric type in the corpus and offering a cor-
rection where one is perceived to be required. This exer-
cise is being carried out by 60 students of the University of
Malta, all of whom are completing a postgraduate diploma
in proofreading. The exercise is being carried out as fol-
lows. The list of unique types in the corpus was divided
into 30 roughly equal chunks of (N ' 15000 per chunk).
Each chunk was allocated to two independent proofreaders.
Proofreaders inspect types via an online interface. Through
the interface, which is displayed in Figure 1, a proofreader
inspects each type individually, with the option of inspect-
ing the type in the various contexts in which it is found in
the corpus. For each type, a proofreader has the option of
(i) marking the type as correct; (ii) correcting the type in
case of spelling errors (including cases where borrowings
are spelt using Maltese orthography but do not conform to
the guidelines); (iii) marking the type as a foreign word if
it is simply used in its original spelling.
The outcome of this exercise is a database of approximately
450,000 types which have been inspected and corrected
where necessary by two independent, trained proofreaders.
Apart from the immediate benefit of being able to correct
spelling errors in the MLRS corpus, the database is also a
resource for (a) identifying common types of spelling error
(e.g. common types of transposition errors and their com-
mon positions within the word); (b) supplying training data
for statistical spellchecking algorithms.

745



Figure 2: Dictionary

5. Current Approaches
In her classical review paper, Kukich (1992) views research
in automatic spelling correction as focusing on three in-
creasingly broad problems: (i) nonword error detection (ii)
isolated word correction and (iii) context dependent word
correction. Although all three have a role to play in an elab-
orate spelling correction system, it is clear that each can be
studied and evaluated separately.

5.1. Nonword Error Detection
In general, error detection is a very hard problem to address
because it involves the recognition of a mismatch between
an abstract intention (what the writer intended) and what
actually appeared. A subset of errors are nonwords whose
detection does not involve intention, but merely decisions
about wordhood. These are in principle easier to detect, re-
quiring only a computable definition of wordhood. Most
early approaches (e.g. The Unix spell program McIlroy
(1982)) defined an error string as one not contained in a dic-
tionary, so efficient coding of such a dictionary was seen as
the core problem. The main weakness of this approach is
that because the dictionary is never complete, the system
cannot distinguish between nonwords and words that hap-
pen not to be in the dictionary.
But we note in passing that a large dictionary per se does
not automatically improve performance5, we subscribe to
the principle that the larger the dictionary, the better, as
pointed out by Damerau and Mays (1989).
In trying to overcome limitations imposed by dictionary
size, we propose a dictionary structure as as shown in Fig-
ure 2. The core strings are those that are known to be real
words whilst the “extended strings are those to which for
whatever reason a probabilistic estimate of wordhood ap-
plies (e.g. is composed of frequently occurring bigrams).
The idea is to accommodate words that are not necessar-
ily defined extensionally. (Sampson, 1989), for example,
found that hyphenated variants, negative forms etc. were a
problem for dictionary-based detection. We believe that it
would be possible to introduce generation rules to generate
such “extended strings so that would have a high probabil-
ity of wordhood.

5Peterson (1986) remarks that a large dictionary could contain

5.2. Isolated Word Correction
After detecting that a word is incorrect, the type of cor-
rection being offered by the spell checker is more or less
dependent on the kind of application the spell checker is
being used in. The spell checker could be designed to ei-
ther correct the misspelled word automatically or it could
be designed to interact with the user, offering a list of pos-
sible suggestions.
Kukich (1992) organises the different techniques used to
tackle this problem into six different classes:

1. Minimum edit distance;

2. Similarity key;

3. Rule-based techniques

4. n-gram-based techniques

5. Probabilistic techniques

6. Neural nets

And in many of the cases, the process of correcting a word
can be seen as (i) generating a list of candidate corrections,
and (ii) ranking this list.
Given the available resources, we decided to focus initially
on a combination of minimum edit distance and probabilis-
tic techniques. One of the reasons for this is that this par-
ticular combination is well documented, having been used
by Kernighan et al. (1990) a program called correct which
attempts to correct a list of rejected words by the Unix spell
program.
When evaluating a rejected word, correct first generates a
list of known words that differ from the typo t by a single
insertion, deletion, substitution or reversal. This candidate
list is then ranked by calculating, for each candidate

P (c)P (t | c)

where:

• P (c) - the prior; is the probability of the word appear-
ing on its own

• P (t | c) - the likelihood; computed from four confu-
sion matrices

– del[x, y]

– ins[x, y]

– sub[x, y]

– trans[x, y]

This calculation, based on Bayes’ Theorem, is used to rank
the suggestions by looking at the word itself and its occur-
rences within a corpus. However, this does not guarantee
that the highest ranked candidate is the correct one. In or-
der to better rank candidates, one should also look at the
context in which this word appears.

words which are rarely encountered and which are similar to com-
mon misspellings (e.g. “wont), resulting in undetected errors

746



5.3. Context Sensitive Techniques
Real word errors are a significant problem for two reasons.
The first is that they are relatively frequent. According
to some earlier studies (Peterson (1986), Mitton (1987),
Wing and Baddeley (1980)), anything from 16% to 40%
of spelling errors yield real words, so they cannot simply
be swept under the carpet. The second problem is that they
will not be discovered by any of the isolated word methods
for nonword detection just mentioned and consequently the
only way to proceed is to make use of context in some way.
But how do we define context, what kind of information is
available under a particular definition of context, and what
class of real word errors can be solved using that informa-
tion?
There are many answers to these questions, and no one
answer will suffice. The study carried out by (Atwell
and Elliott, 1987) quoted in Kukich’s review article is re-
vealing. Carefully analysing a small sample of errors,
they attempted to establish relative proportions of differ-
ent kinds of spelling error across documents from different
sources including those by children, non-native speakers,
and proof-read published texts. They identified three cat-
egories of real word error (i) those in locally invalid syn-
tactic contexts, (ii) those in globally invalid syntactic con-
texts (iii) syntactically valid but semantically anomalous.
Although the distribution varied widely according to text
genre it turned out that a significant proportion of errors
were detectable as local syntactic violations, such as “The
study was carried out be John Black”. This kind of er-
ror could be addressed by looking for improbable N-grams
of POS tags. Deeper level syntactic errors concerning e.g.
subject verb agreement may require a full syntactic parse,
and even though this could prove to be computationally
heavy, it is not totally implausible.
To handle errors of type (i) a sine qua non is a POS tag lan-
guage model, and hence, the availability of sufficient quan-
tities of POS training data. A POS-tagger is under devel-
opment, and is currently reaching a performance of around
90%. This is expected to improve in the medium term, so
the outlook is promising for this line of attack. Errors of
type (ii) will take a little longer to address, since work on
deep level syntactic analysis has scarcely begun.
It is errors of type (iii) which are perhaps the most chal-
lenging. A typical example would be “they are leaving in
about fifteen minuets”. Any native speaker will immedi-
ately recognise and correct this error and would have proba-
bly have difficulty distinguishing between the detection and
correction phases.
Detection of the error presumably arises because of the low
frequency of collocations associated involving the words
“leaving, fifteen” and “minuets”. It is relatively easy to see
how correction might proceed along the lines proposed by
Kernighan, checking the relative frequencies of the collo-
cations “leaving, fifteen” and all words within a fixed edit
distance of “minuets”. Presumably a peak would be found
for “minutes”.
We are poised to investigate the frequency of collocations
using the functionality associated with the MLRS server.
What remains unclear at this stage is whether the 100M
word corpus is sufficiently large to detect an interesting pro-

Figure 3: Evaluation Metrics (Reynaert (2008)

portion of type (iii) errors. However this is fertile ground
for future empirical research.

5.4. Evaluation Criteria
In order to make progress we need to evaluate performance,
yet to date evaluation of current and past efforts on spelling
correction for Maltese has been entirely absent. A corner-
stone of our approach is therefore to establish a methodol-
ogy of evaluation and to begin by establishing some base-
lines.
We propose to adopt the evaluation framework proposed by
Reynaert (2008) which uses the metrics illustrated in figure
3.
The large box represents the set of words in a text. The
non-target portion represents the correct words, the tar-
get portion the incorrect forms. The smaller box repre-
sents the words that are actually selected for correction
by a spellchecker. So those that intersect the target words
are true positives (TP), whilst those intersecting non-target
words are false positives (FP). The remaining unselected
non-target words are true negatives (TN) whilst the unse-
lected target words are false negatives (FN).
Reynaert’s scheme includes five different levels of evalua-
tion that distinguish between (i) core correction, (ii) error
detection (iii) suggestion of correction candidates (iv) N-
best ranking and (v) first-best ranking. The first level is the
easiest to implement, being the only one in which it is suf-
ficient to evaluate on lists of errors only (i.e. the detection
task does not come into it.
In this paper we report on level (i) since this is our start-
ing point. However, the other levels of evaluation will be
progressively taken up in future.

6. Architectural Framework
Much effort has been put into the system’s design. This
takes the form of a quasi-abstract framework promoting
extensibility and reusability. Our work revolves around
one main objective – improving the system’s performance.
Given the peculiarities of the Maltese language and the fact
that there are no benchmarked results, it is currently very
difficult to judge which methodologies works best for Mal-
tese. Hence, in conformity with component-based software
engineering prinicples, the proposed framework allows a
developer to plug-in and experiment with different compo-
nents in order to perform evaluate and arrive at an optimum
level of performance.
A simplified overview of this framework is illustrated in
Figure 4.
The main building blocks of this architecture include:

• Interfaces - through which the system’s main compo-
nents (i.e. the spell checker and the system evaluator)
interact

• Components - each of which is responsible for a spe-
cific task

747



Figure 4: Overall Architecture

• A common repository of lexical resources - contain-
ing resources such as training data, dictionaries, and
other resources which might be required by the sys-
tem’s components

• Gold standard data - used by the system evaluator
componont to evaluate the spell checker’s correctness

In order to better explain the above diagram, the following
sections take into consideration the two main modules: (i)
the spell checker, and (ii) the evaluator.

6.1. Spell Checker
A spell checker can be seen as an object which can make
use of three components: (i) an error detection component
(ii) a suggestion generator, and (iii) a suggestion ranking
component. Each of these components could be invoked by
a spell checker using the respective interface.
Each of these components is discussed in further detail in
the following subsections.

6.1.1. Error Detection Component
Error detection is a fundamental module within a spell
checker, whose functionality may vary according to the de-
gree of sophistication of the spell checker itself. As de-
scribed by (Kernighan et al., 1990), such a module may
try to identify errors by considering a word in isolation, or
taking into account the context in which it appears Even
though the implementation of these may vary, they are both
evaluating a string of characters. An instance of an error
detection module will thus provide the system:

• A delimiter (such as a regular expression) of when the
object should be invoked, and

• A degree of acceptance, ranging between zero and one

Rather than returning a boolean value, it would be better
that the system returns a percentage of how acceptable this
word is within our lexicon, allowing for more refined re-
sults and further processing. If the developer wishes to
make use of boolean values, the result of this process could
be either zero or one.

6.1.2. Error Correction
After a word has been tagged as an error, correction takes
place; either by providing the user with a list of sugges-
tions, or by automatically correcting the word. As to fur-
ther modularize the process, the framework splits this into
two separate processes, providing the respective interfaces:

• An interface for generating suggestions, and

• An interface for ranking the suggestions

Having these two processes loosely coupled allows for eas-
ier evaluation of different components as the evaluation sys-
tem will be indicating the weak points of the system. Addi-
tionally the interface will require the components to imple-
ment

• A method generate which will be used to invoke the
component responsible for generating the suggestions;
taking as input a string of characters and returning a
list of strings

• A method rank which will be used to invoke the com-
ponent responsible for ranking the output list; taking
and returning a list of string

6.2. System Evaluator
Spell checking can be either online or offline, and can be
equipped with either automatic correction or it can be de-
signed to interact with the user, or it may contain both func-
tionalities. Consequently, the performance criteria can vary.
For example a spell checker designed to interact with the
user needs to be both robust as well as efficient, detecting
the error and presenting the user with suggestions in a rea-
sonable time. Hence, a developer might want to tune the
spell checker to decrease execution time at the expense of
correctness. The proposed framework anticipates different
possible criteria, although to date we have only given seri-
ous consideration to the issue of correctness which is de-
pendent on both error detection and error correction. The
performance of error detection, as discussed in Renaert, can
be calculated on true positives, true negatives, false posi-
tives and false negatives. Through the use of an evalua-
tion interface, an evaluation summary is generated, given
golden data. The output lists precision and recall, and the
figures of the TPs, TNs, FPs and FNs.
Correction can then be evaluated on the generated sugges-
tions, checking whether the correct word is in the list, and
at what position of the list it is ranked.

7. Roadmap
The problem discussed in this paper remains open. How-
ever, we hope to have convinced the reader that the
prerequisites are now in place for a series of develop-
ment/evaluation cycles to be carried out, namely:

• a new collection of data resources, and the functional-
ity to add more resources to the system;

• a framework which can be used to host different plug-
gable components which can be combined to work to-
gether to tune the spell checkers performance for the
underlying application, and

748



MED Count
0 268141
1 164665
2 68962
3 26626
4 10876
5 6071

Table 1: Error Distribution by Minimum Edit Distance

• consistent evaluation criteria.

In this section we put these elements together, forming a
concrete roadmap describing what we have accomplished
so far, and what we aim to achieve over time.

7.1. Establishing a Baseline
The first required task is to establish a series of baselines
for each of the levels foreseen by Reynaert (2008). For
this task we put together a very simple spell checker which
takes as input a list of words (which can be either correct or
misspelled) and outputs which words are recognized, along
with a list of ranked suggestions for each unidentified word.
Both error detection and correction focus on isolated words.
Below we cover the resources and methods used to imple-
ment the spell checker, followed by the method used to
evaluate its performance .

7.1.1. Error Detection
The error detection component makes use of an extensive
wordlist kindly provided by R. Casha for the Linux User
Group’s online spell checker. This list contains proper
names, nouns, verbs (including their inflections), and more.
This is loaded in memory on startup, and is stored in a data
structure using a hashing function. For each input word,
the system computes its hashing function and if the entry is
present in the data structure, then the word is considered to
exist in the language. If however the word is not recognised,
this is passed on to the error correction module.

7.1.2. Error Correction
Given a misspelled word, the error correction module gen-
erates a list of candidate corrections which is then ranked
(as explained in section 6.1.2.). The list of candidate
corrections is generated using the minimum edit distance
(MED) function which is computed over all the words in
the wordlist against the misspelled word. Those words
which have a distance of one, are considered to be good
candidates. This resulting list of suggestions is then ranked
according to frequency in the MLRS corpus.

7.1.3. System Evaluation
At the time of writing we have only been able to cover level
1, for which we have prepared a series of test files from the
error corpus. The distribution of errors by edit distance is
shown in table 7.1.3..

Cycle Precision Recall F-Score
1 0.584 0.964 0.727
2 0.582 0.927 0.715
3 0.595 0.928 0.725
4 0.596 0.968 0.738
5 0.594 0.948 0.730
6 0.609 0.96 0.745
7 0.597 0.952 0.734
8 0.601 0.964 0.740
9 0.613 0.968 0.751

10 0.620 0.956 0.752

Table 2: Performance Figures

The test file comprises a total of 500 words, randomly ex-
tracted from the hand corrected error corpus. The extracted
words fall under two categories:

• a set of 250 correct words - having a minimum edit
distance of zero

• a set of 250 misspelled words - having a minimum edit
distance of one

This test file was given to the spell checker, and the out-
put was checked with the hand corrected error data. Using
this data, the TPs, FPs, TNs and FNs are calculated. This
procedure was repeated ten times, randomly generating a
different test file for each cycle. Precision and recall are
recorded for every cycle, along with the corresponding F-
Score. This set of results can be seen in table 7.1.3..

7.2. Future work
At the time of writing, we have only been able to implement
a basic spell checker given available resources. However, as
already mentioned new resources are becoming available as
well as a framework which makes it easier for developers to
create, share and tune the spell checker for the underlying
application. The following subsections discuss the future
plans.

7.2.1. Enriching the Spell Checker
Now that we have benchmarked a set of results, we plan
to start improving the spell checker’s performance by in-
troducing new resources. From a linguistic perspective
there is the possibility of introducing hand crafted well-
formedness rules as suggested in section 2.2.. These will
be used both during error detection (for evaluating possible
inflections), as well as for error correction (to further en-
hance the ranking mechanism). Another exiting area for de-
velopment concerns context-sensitive spelling correction.
Enhancements to the functionality of MLRS using Sketch
Engine (Kilgarriff et al., 2004) are ongoing. These are in-
tended to yield data on the context of words in general that
can be exploited in spell-chacking. In the longer term we
expect to incorporate morphological analysis into the de-
tection and correction processes, but research in this area is
still embrionic.

749



7.2.2. Graphical User Interfaces
Having a framework in place might not be enough. The
idea is to have two different graphical user interfaces
(GUIs):

• a GUI for developers, which will provide drag and
drop functionalities allowing the developer to easily
test how different components behave together

• a GUI for users, which will provide a text editing en-
vironment

Additionally, inbuilt with the developer’s GUI, we foresee
the provision of functionality to export a current setup as a
component which can be used in other applications.

8. References
Akkademja tal-Malti. 2001. Regoli tal-Kitba tal-Malti.

Klabb Kotba Maltin, Malta: Valletta.
E. Atwell and S. Elliott. 1987. Dealing with ill-formed en-

glish text. In R. Garside, G. Leach, and G Sampson,
editors, Computational Analysis of English: A Corpus-
Based Approach, chapter 10. Longmans, New York.

F. Damerau and E. Mays. 1989. An examination of unde-
tected typing errors. Inf. Process. Manage., 25(6):659–
664.

R. Fabri. 2009. Stem allomorphy in the Maltese verb. In
T. Stolz, editor, Ilsienna - Our Language, volume 1,
pages 1–20. Dr. N Brokmeyer, Bochum.

Il-Kunsill Nazzjonali tal-Ilsien Malti. 2008. Deċiżjonijiet
1 tal-kunsill nazzjonali tal-ilsien malti dwar il-varjanti
ortografiċi. Il-Furjana Press.

Mark D. Kernighan, Kenneth Church, and William A. Gale.
1990. A spelling correction program based on a noisy
channel model. In Proceedings of the Thirteenth In-
ternational Conference on Computational Linguistics,
pages 205–210. http://acl.ldc.upenn.edu/
C/C90/C90-2036.pdf.

Adam Kilgarriff, Pavel Rychly, Pavel Smrz, and David
Tugwell. 2004. The sketch engine. In Proceedings of
EURALEX.

Karen Kukich. 1992. Techniques for automatically
correcting words in text. ACM Comput. Surv.,
24:377–439, December. http://doi.acm.org/
10.1145/146370.146380.

G. Mangion. 1999. Spelling Correction for Maltese. Tech-
nical report, Dept. CSAI, University of Malta, Msida
MSD2080, Malta.

M. McIlroy. 1982. Development of a spelling list. IEEE
Transactions Communcations, 30(1):91 – 99, jan.

R. Mitton. 1987. Spelling Checkers, Spelling Correctors,
and the Misspellings of Poor Spellers. Inf. Process.
Manag., 23(5):495–505.

R. Mizzi. 2000. The Development of a Statistical Spell
Checker for Maltese. Technical report, Dept. CSAI, Uni-
versity of Malta, Msida MSD2080, Malta.

J. Peterson. 1986. A Note on Undetected Typing Errors.
CACM, 29(7):633–637.

M Reynaert. 2008. All, and only, the errors: more
complete and consistent spelling and ocr-error cor-
rection evaluation. In N. Calzolari, K. Choukri,

B. Maegaard, J. Mariani, J. Odjik, S. Piperidis, and
D. Tapias, editors, Proc. LREC 2008, Marrakech,
Morocco. European Language Resources Associa-
tion (ELRA). http://ilk.uvt.nl/downloads/
pub/papers/477_paper.pdf.

G. 1989 Sampson. 1989. How fully does a machine-
usable dictionary cover english text. Lit. Ling Comput-
ing, 4(1):29–35.

A. Wing and A. Baddeley. 1980. Spelling errors in hand-
writing: A corpus and distributional analysis. In U. Frith,
editor, Cognitive Processes in Spelling. Academic Press,
London.

750

http://acl.ldc.upenn.edu/C/C90/C90-2036.pdf
http://acl.ldc.upenn.edu/C/C90/C90-2036.pdf
http://doi.acm.org/10.1145/146370.146380
http://doi.acm.org/10.1145/146370.146380
http://ilk.uvt.nl/downloads/pub/papers/477_paper.pdf
http://ilk.uvt.nl/downloads/pub/papers/477_paper.pdf

	Introduction
	Background
	Maltese Word Formation
	Some Specific Spelling Rules of Maltese
	Maltese Spell Checking to date

	Aims and Objectives
	New Resources
	Error Corpus

	Current Approaches
	Nonword Error Detection
	Isolated Word Correction
	Context Sensitive Techniques
	Evaluation Criteria

	Architectural Framework
	Spell Checker
	Error Detection Component
	Error Correction

	System Evaluator

	Roadmap
	Establishing a Baseline
	Error Detection
	Error Correction
	System Evaluation

	Future work
	Enriching the Spell Checker
	Graphical User Interfaces


	References

