222 research outputs found

    Competitive androgen receptor antagonism as a factor determining the predictability of cumulative antiandrogenic effects of widely used pesticides

    Get PDF
    Copyright @ 2012 National Institute of Environmental Health Sciences.This article has been made available through the Brunel Open Access Publishing Fund.Background: Many pesticides in current use have recently been revealed as in vitro androgen receptor (AR) antagonists, but information about their combined effects is lacking.
Objective: We investigated the combined effects and the competitive AR antagonism of pesticide mixtures.
Methods: We used the MDA-kb2 assay to test a combination of eight AR antagonists that did not also possess AR agonist properties (“pure” antagonists; 8 mix: fludioxonil, fenhexamid, ortho-­phenylphenol, imazalil, tebuconazole, dimetho­morph, methiocarb, pirimiphos-methyl), a combina­tion of five AR antagonists that also showed agonist activity (5 mix: cyprodinil, pyrimethanil, vinclozolin, chlor­propham, linuron), and all pesticides combined (13 mix). We used concentration addition (CA) and independent action (IA) to formu­late additivity expectations, and Schild plot analyses to investigate competitive AR antagonism.
Results: A good agreement between the effects of the mixture of eight “pure” AR antagonists and the responses predicted by CA was observed. Schild plot analysis revealed that the 8 mix acted by competi­tive AR antagonism. However, the observed responses of the 5 mix and the 13 mix fell within the “prediction window” boundaries defined by the predicted regression curves of CA and IA. Schild plot analysis with these mixtures yielded anomalous responses incompatible with competitive receptor antagonism.
Conclusions: A mixture of widely used pesticides can, in a predictable manner, produce combined AR antagonist effects that exceed the responses elicited by the most potent component alone. Inasmuch as large populations are regularly exposed to mixtures of anti­androgenic pesticides, our results underline the need for considering combination effects for these substances in regulatory practice.
This article is made available through the Brunel Open Access Publishing Fund. This work was funded by the European Commission, FP7 programme (CONTAMED, grant 212502).

    Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations ismissing. Such data can reveal whether joint effects at the receptor are induced at low levels andmay support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicalswere combined at threemixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists froma wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity

    Widely Used Pesticides with Previously Unknown Endocrine Activity Revealed as in Vitro Antiandrogens

    Get PDF
    Background: Evidence suggests that there is widespread decline in male reproductive health and that antiandrogenic pollutants may play a significant role. There is also a clear disparity between pes¬ticide exposure and data on endocrine disruption, with most of the published literature focused on pesticides that are no longer registered for use in developed countries. Objective: We used estimated human exposure data to select pesticides to test for antiandrogenic activity, focusing on highest use pesticides. Methods: We used European databases to select 134 candidate pesticides based on highest expo-sure, followed by a filtering step according to known or predicted receptor-mediated antiandrogenic potency, based on a previously published quantitative structure–activity relationship (QSAR) model. In total, 37 pesticides were tested for in vitro androgen receptor (AR) antagonism. Of these, 14 were previously reported to be AR antagonists (“active”), 4 were predicted AR antagonists using the QSAR, 6 were predicted to not be AR antagonists (“inactive”), and 13 had unknown activity, which were “out of domain” and therefore could not be classified with the QSAR (“unknown”). Results: All 14 pesticides with previous evidence of AR antagonism were confirmed as antiandrogenic in our assay, and 9 previously untested pesticides were identified as antiandrogenic (dimethomorph, fenhexamid, quinoxyfen, cyprodinil, λ-cyhalothrin, pyrimethanil, fludioxonil, azinphos-methyl, pirimiphos-methyl). In addition, we classified 7 compounds as androgenic. Conclusions: Due to estimated antiandrogenic potency, current use, estimated exposure, and lack of previous data, we strongly recommend that dimethomorph, fludioxonil, fenhexamid, imazalil, ortho-phenylphenol, and pirimiphos-methyl be tested for antiandrogenic effects in vivo. The lack of human biomonitoring data for environmentally relevant pesticides presents a barrier to current risk assessment of pesticides on humans.European Commission (grant 21250

    Effects of common pesticides on prostaglandin D2 (PGD2) inhibition in SC5 mouse sertoli cells, evidence of binding at the cox-2 active site, and implications for endocrine disruption

    Get PDF
    Background: There are concerns that diminished prostaglandin action in fetal life could increase the risk of congenital malformations. Many endocrine-disrupting chemicals have been found to suppress prostaglandin synthesis, but to our knowledge, pesticides have never been tested for these effects. Objectives: We assessed the ability of pesticides that are commonly used in the European Union to suppress prostaglandin D2 (PGD2) synthesis. Methods: Changes in PGD2 secretion in juvenile mouse Sertoli cells (SC5 cells) were measured using an ELISA. Coincubation with arachidonic acid (AA) was conducted to determine the site of action in the PGD2 synthetic pathway. Molecular modeling studies were performed to assess whether pesticides identified as PGD2-active could serve as ligands of the cyclooxygenase-2 (COX-2) binding pocket. Results: The pesticides boscalid, chlorpropham, cypermethrin, cyprodinil, fenhexamid, fludioxonil, imazalil (enilconazole), imidacloprid, iprodione, linuron, methiocarb, o-phenylphenol, pirimiphos- methyl, pyrimethanil, and tebuconazole suppressed PGD2 production. Strikingly, some of these substances—o-phenylphenol, cypermethrin, cyprodinil, linuron, and imazalil (enilconazole)— showed potencies (IC50) in the range between 175 and 1,500 nM, similar to those of analgesics intended to block COX enzymes. Supplementation with AA failed to reverse this effect, suggesting that the sites of action of these pesticides are COX enzymes. The molecular modeling studies revealed that the COX-2 binding pocket can accommodate most of the pesticides shown to suppress PGD2 synthesis. Some of these pesticides are also capable of antagonizing the androgen receptor. Conclusions: Chemicals with structural features more varied than previously thought can suppress PGD2 synthesis. Our findings signal a need for in vivo studies to establish the extent of endocrinedisrupting effects that might arise from simultaneous interference with PGD2 signaling and androgen action

    A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis

    Full text link
    Irreversible cell growth arrest, a process termed cellular senescence, is emerging as an intrinsic tumor suppressive mechanism. Oncogene-induced senescence is thought to be invariably preceded by hyperproliferation, aberrant replication, and activation of a DNA damage checkpoint response (DDR), rendering therapeutic enhancement of this process unsuitable for cancer treatment. We previously demonstrated in a mouse model of prostate cancer that inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (Pten) elicits a senescence response that opposes tumorigenesis. Here, we show that Pten-loss-induced cellular senescence (PICS) represents a senescence response that is distinct from oncogene-induced senescence and can be targeted for cancer therapy. Using mouse embryonic fibroblasts, we determined that PICS occurs rapidly after Pten inactivation, in the absence of cellular proliferation and DDR. Further, we found that PICS is associated with enhanced p53 translation. Consistent with these data, we showed that in mice p53-stabilizing drugs potentiated PICS and its tumor suppressive potential. Importantly, we demonstrated that pharmacological inhibition of PTEN drives senescence and inhibits tumorigenesis in vivo in a human xenograft model of prostate cancer. Taken together, our data identify a type of cellular senescence that can be triggered in nonproliferating cells in the absence of DNA damage, which we believe will be useful for developing a 'pro-senescence' approach for cancer prevention and therapy

    Arylstibonic acids are potent and isoform-selective inhibitors of Cdc25a and Cdc25b phosphatases

    No full text
    Arylstibonates structurally resemble phosphotyrosine side chains in proteins and here we addressed the ability of such compounds to act as inhibitors of a panel of mammalian tyrosine and dual-specificity phosphatases. Two arylstibonates both possessing a carboxylate side chain were identified as potent inhibitors of the protein tyrosine phosphatase PTP-β. In addition, they inhibited the dual-specificity, cell cycle regulatory phosphatases Cdc25a and Cdc25b with sub-micromolar potency. However, the Cdc25c phosphatase was not affected demonstrating that arylstibonates may be viable leads from which to develop isoform specific Cdc25 inhibitors

    The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients

    Get PDF
    Epithelial ovarian cancer is the leading cause of death among female genital malignancies. Reduced expression of the cell adhesion molecule E-cadherin was previously shown to be associated with adverse prognostic features. The role of the E-cadherin repressor Snail in ovarian cancer progression remains to be elucidated. We analysed formalin-fixed and paraffin-embedded specimens of 48 primary ovarian tumours and corresponding metastases for expression of E-cadherin and Snail by immunohistochemistry. We found a significant correlation between E-cadherin expression in primary cancers and their corresponding metastases (P<0.001). This correlation was found for Snail expression as well (P<0.001). There was a significant (P=0.008) association of reduced E-cadherin expression in primary ovarian cancer with shorter overall survival. Similarly, Snail expression in corresponding metastases (P=0.047) was associated with reduced overall survival of the patients. Additionally, the group of patients showing reduced E-cadherin and increased Snail immunoreactivity in primary tumours and corresponding metastases, respectively, had a significantly higher risk of death (P=0.002 and 0.022, respectively) when compared to the patient group with the reference expression profile E-cadherin positive and Snail negative. Taken together, the results of our study show that the E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients

    Vanadyl complexes with dansyl-labelled dipicolinic acid ligands: synthesis, phosphatase inhibition activity and cellular uptake studies

    Get PDF
    Vanadium complexes have been previously utilised as potent inhibitors of cysteine based phosphatases (CBPs). Herein, we present the synthesis and characterisation of two new fluorescently labelled vanadyl complexes (14 and 15) with bridged di-picolinic acid ligand. These compounds differ significantly from previous vanadyl complexes with phosphatase inhibition properties in that the metal-chelating part is a single tetradentate unit, which should afford greater stability and scope for synthetic elaboration then the earlier complexes. These new complexes inhibit a selection of cysteine based phosphatases (CBPs) in the nM range with some selectivity. Fluorescence spectroscopic studies (including fluorescence anisotropy) were carried out to demonstrate that the complexes are not simply acting as vanadyl delivery vehicles but they interact with the proteins. Finally, we present preliminary fluorescence microscopy studies to demonstrate that the complexes are cell permeable and localise throughout the cytoplasm of NIH3T3 cells
    corecore