1,551 research outputs found

    Modeling Antarctic tides in response to ice shelf thinning and retreat

    Get PDF
    Tides play an important role in ice sheet dynamics by modulating ice stream velocity, fracturing, and moving ice shelves and mixing water beneath them. Any changes in ice shelf extent or thickness will alter the tidal dynamics through modification of water column thickness and coastal topography but these will in turn feed back onto the overall ice shelf stability. Here, we show that removal or reduction in extent and/or thickness of the Ross and Ronne-Filchner ice shelves would have a significant impact on the tides around Antarctica. The Ronne-Filchner appears particularly vulnerable, with an increase in M2 amplitude of over 0.5 m beneath much of the ice shelf potentially leading to tidally induced feedbacks on ice shelf/sheet dynamics. These results highlight the importance of understanding tidal feedbacks on ice shelves/streams due to their influence on ice sheet dynamics

    Critical dynamics of self-gravitating Langevin particles and bacterial populations

    Full text link
    We study the critical dynamics of the generalized Smoluchowski-Poisson system (for self-gravitating Langevin particles) or generalized Keller-Segel model (for the chemotaxis of bacterial populations). These models [Chavanis & Sire, PRE, 69, 016116 (2004)] are based on generalized stochastic processes leading to the Tsallis statistics. The equilibrium states correspond to polytropic configurations with index nn similar to polytropic stars in astrophysics. At the critical index n3=d/(d−2)n_{3}=d/(d-2) (where d≄2d\ge 2 is the dimension of space), there exists a critical temperature Θc\Theta_{c} (for a given mass) or a critical mass McM_{c} (for a given temperature). For Θ>Θc\Theta>\Theta_{c} or M<McM<M_{c} the system tends to an incomplete polytrope confined by the box (in a bounded domain) or evaporates (in an unbounded domain). For Θ<Θc\Theta<\Theta_{c} or M>McM>M_{c} the system collapses and forms, in a finite time, a Dirac peak containing a finite fraction McM_c of the total mass surrounded by a halo. This study extends the critical dynamics of the ordinary Smoluchowski-Poisson system and Keller-Segel model in d=2d=2 corresponding to isothermal configurations with n3→+∞n_{3}\to +\infty. We also stress the analogy between the limiting mass of white dwarf stars (Chandrasekhar's limit) and the critical mass of bacterial populations in the generalized Keller-Segel model of chemotaxis

    A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body

    Full text link
    The issue of the inviscid limit for the incompressible Navier-Stokes equations when a no-slip condition is prescribed on the boundary is a famous open problem. A result by Tosio Kato says that convergence to the Euler equations holds true in the energy space if and only if the energy dissipation rate of the viscous flow in a boundary layer of width proportional to the viscosity vanishes. Of course, if one considers the motion of a solid body in an incompressible fluid, with a no-slip condition at the interface, the issue of the inviscid limit is as least as difficult. However it is not clear if the additional difficulties linked to the body's dynamic make this issue more difficult or not. In this paper we consider the motion of a rigid body in an incompressible fluid occupying the complementary set in the space and we prove that a Kato type condition implies the convergence of the fluid velocity and of the body velocity as well, what seems to indicate that an answer in the case of a fixed boundary could also bring an answer to the case where there is a moving body in the fluid

    Thermodynamics of self-gravitating systems

    Full text link
    Self-gravitating systems are expected to reach a statistical equilibrium state either through collisional relaxation or violent collisionless relaxation. However, a maximum entropy state does not always exist and the system may undergo a ``gravothermal catastrophe'': it can achieve ever increasing values of entropy by developing a dense and hot ``core'' surrounded by a low density ``halo''. In this paper, we study the phase transition between ``equilibrium'' states and ``collapsed'' states with the aid of a simple relaxation equation [Chavanis, Sommeria and Robert, Astrophys. J. 471, 385 (1996)] constructed so as to increase entropy with an optimal rate while conserving mass and energy. With this numerical algorithm, we can cover the whole bifurcation diagram in parameter space and check, by an independent method, the stability limits of Katz [Mon. Not. R. astr. Soc. 183, 765 (1978)] and Padmanabhan [Astrophys. J. Supp. 71, 651 (1989)]. When no equilibrium state exists, our relaxation equation develops a self-similar collapse leading to a finite time singularity.Comment: 54 pages. 25 figures. Submitted to Phys. Rev.

    Constraints on a Massive Dirac Neutrino Model

    Full text link
    We examine constraints on a simple neutrino model in which there are three massless and three massive Dirac neutrinos and in which the left handed neutrinos are linear combinations of doublet and singlet neutrinos. We examine constraints from direct decays into heavy neutrinos, indirect effects on electroweak parameters, and flavor changing processes. We combine these constraints to examine the allowed mass range for the heavy neutrinos of each of the three generations.Comment: latex, 29 pages, 7 figures (not included), MIT-CTP-221

    Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions

    Full text link
    We address the thermodynamics (equilibrium density profiles, phase diagram, instability analysis...) and the collapse of a self-gravitating gas of Brownian particles in D dimensions, in both canonical and microcanonical ensembles. In the canonical ensemble, we derive the analytic form of the density scaling profile which decays as f(x)=x^{-\alpha}, with alpha=2. In the microcanonical ensemble, we show that f decays as f(x)=x^{-\alpha_{max}}, where \alpha_{max} is a non-trivial exponent. We derive exact expansions for alpha_{max} and f in the limit of large D. Finally, we solve the problem in D=2, which displays rather rich and peculiar features

    Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution

    Full text link
    Using a Maximum Entropy Production Principle (MEPP), we derive a new type of relaxation equations for two-dimensional turbulent flows in the case where a prior vorticity distribution is prescribed instead of the Casimir constraints [Ellis, Haven, Turkington, Nonlin., 15, 239 (2002)]. The particular case of a Gaussian prior is specifically treated in connection to minimum enstrophy states and Fofonoff flows. These relaxation equations are compared with other relaxation equations proposed by Robert and Sommeria [Phys. Rev. Lett. 69, 2776 (1992)] and Chavanis [Physica D, 237, 1998 (2008)]. They can provide a small-scale parametrization of 2D turbulence or serve as numerical algorithms to compute maximum entropy states with appropriate constraints. We perform numerical simulations of these relaxation equations in order to illustrate geometry induced phase transitions in geophysical flows.Comment: 21 pages, 9 figure

    Search for a 33.9 MeV/c^2 Neutral Particle in Pion Decay

    Get PDF
    The E815 (NuTeV) neutrino experiment has performed a search for a 33.9 MeV/c^2 weakly-interacting neutral particle produced in pion decay. Such a particle may be responsible for an anomaly in the timing distribution of neutrino interactions in the KARMEN experiment. E815 has searched for this particle's decays in an instrumented decay region; no evidence for this particle was found. The search is sensitive to pion branching ratios as low as 10^-13.Comment: 4 pages; 5 figure

    Comparison of low--energy resonances in 15N(alpha,gamma)19F and 15O(alpha,gamma)19Ne and related uncertainties

    Full text link
    A disagreement between two determinations of Gamma_alpha of the astro- physically relevant level at E_x=4.378 MeV in 19F has been stated in two recent papers by Wilmes et al. and de Oliveira et al. In this work the uncertainties of both papers are discussed in detail, and we adopt the value Gamma_alpha=(1.5^{+1.5}_{-0.8})10^-9eV for the 4.378 MeV state. In addition, the validity and the uncertainties of the usual approximations for mirror nuclei Gamma_gamma(19F) approx Gamma_gamma(19Ne), theta^2_alpha(19F) approx theta^2_alpha(19Ne) are discussed, together with the resulting uncertainties on the resonance strengths in 19Ne and on the 15O(alpha,gamma)19Ne rate.Comment: 9 pages, Latex, To appear in Phys. Rev.
    • 

    corecore