18 research outputs found

    Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington’s disease knock-in striatal cells

    Get PDF
    Akt, protein kinase B; ARE, antioxidant response element; Erk, extracellular signal-regulated kinase; CBP, CREB-binding protein; CREB, cAMP response-element (CRE) binding protein; CDK, cyclin-dependent kinase; DHE, dihydroethidium; Drp1, dynamin-related protein 1 or dynamin 1-like (DNM1L); GCL, glutamate-cysteine ligase; GCLc, glutamate-cysteine catalytic subunit; GPx, glutathione peroxidase; GSH, glutathione, reduced form; GSSG, glutathione oxidized form; IGF-1, Insulin-like growth factor 1; IGF1R, insulin-like growth factor 1 receptor; IR, insulin receptor; IRS, insulin receptor substrate; H2DCFDA, 2′,7′-dichlorodihydrofluorescein diacetate; HKII, hexokinase type II; HD, Huntington’s disease; HO-1, heme oxygenase; Hsp60, heat shock 60 kDa protein 1 (chaperonin); mHtt, mutant huntingtin; mtDNA, mitochondrial DNA; MT-COII, mitochondrial-encoded cytochrome c oxidase II; mTOR, mammalian target of rapamycin; NDUFS3, NADH dehydrogenase (ubiquinone) Fe–S protein 3, 30 kDa (NADH-coenzyme Q reductase); NQO1, NAD(P)H dehydrogenase [quinone] 1; Nrf2, nuclear factor (erythroid-derived 2)-like 2; PI-3K, phosphatidylinositol 3-kinase; PGC-1α, peroxisome proliferator-activated receptor-γ coactivator 1α; ROS, reactive oxygen species; SDHA, succinate dehydrogenase complex, subunit A, flavoprotein (Fp); SOD, superoxide dismutase; Tfam, transcription factor A, mitochondrial; TMRM, tetramethylrhodamine methyl ester; Tom20, translocase of outer mitochondrial membrane 20 homolog (yeast); Tom40, translocase of outer mitochondrial membrane 40 homolog (yeast)

    Histone Deacetylase Inhibitors Protect Against Pyruvate Dehydrogenase Dysfunction in Huntington's Disease

    Get PDF
    Transcriptional deregulation and changes in mitochondrial bioenergetics, including pyruvate dehydrogenase (PDH) dysfunction, have been described in Huntington's disease (HD). We showed previously that the histone deacetylase inhibitors (HDACIs) trichostatin A and sodium butyrate (SB) ameliorate mitochondrial function in cells expressing mutant huntingtin. In this work, we investigated the effect of HDACIs on the regulation of PDH activity in striatal cells derived from HD knock-in mice and YAC128 mice. Mutant cells exhibited decreased PDH activity and increased PDH E1alpha phosphorylation/inactivation, accompanied by enhanced protein levels of PDH kinases 1 and 3 (PDK1 and PDK3). Exposure to dichloroacetate, an inhibitor of PDKs, increased mitochondrial respiration and decreased production of reactive oxygen species in mutant cells, emphasizing PDH as an interesting therapeutic target in HD. Treatment with SB and sodium phenylbutyrate, another HDACI, recovered cell viability and overall mitochondrial metabolism in mutant cells. Exposure to SB also suppressed hypoxia-inducible factor-1 (HIF-1α) stabilization and decreased the transcription of the two most abundant PDK isoforms, PDK2 and PDK3, culminating in increased PDH activation in mutant cells. Concordantly, PDK3 knockdown improved mitochondrial function, emphasizing the role of PDK3 inactivation on the positive effects achieved by SB treatment. YAC128 mouse brain presented higher mRNA levels of PDK1-3 and PDH phosphorylation and decreased energy levels that were significantly ameliorated after SB treatment. Furthermore, enhanced motor learning and coordination were observed in SB-treated YAC128 mice. These results suggest that HDACIs, particularly SB, promote the activity of PDH in the HD brain, helping to counteract HD-related deficits in mitochondrial bioenergetics and motor function.SIGNIFICANCE STATEMENT The present work provides a better understanding of mitochondrial dysfunction in Huntington's disease (HD) by showing that the pyruvate dehydrogenase (PDH) complex is a promising therapeutic target. In particular, the histone deacetylase inhibitor sodium butyrate (SB) may indirectly (through reduced hypoxia-inducible factor 1 alpha stabilization) decrease the expression of the most abundant PDH kinase isoforms (e.g., PDK3), ameliorating PDH activity and mitochondrial metabolism and further affecting motor behavior in HD mice, thus constituting a promising agent for HD neuroprotective treatment.FCT, Santa Casa da Misericórdia de Lisboa (SCML), Fundação Luso-Americana para o Desenvolvimento (FLAD) Life Scienc

    Dysregulation of autophagy as a common mechanism in lysosomal storage diseases

    Get PDF
    The lysosome plays a pivotal role between catabolic and anabolic processes as the nexus for signalling pathways responsive to a variety of factors, such as growth, nutrient availability, energetic status and cellular stressors. Lysosomes are also the terminal degradative organelles for autophagy through which macromolecules and damaged cellular components and organelles are degraded. Autophagy acts as a cellular homeostatic pathway that is essential for organismal physiology. Decline in autophagy during ageing or in many diseases, including late-onset forms of neurodegeneration is considered a major contributing factor to the pathology. Multiple lines of evidence indicate that impairment in autophagy is also a central mechanism underlying several lysosomal storage disorders (LSDs). LSDs are a class of rare, inherited disorders whose histopathological hallmark is the accumulation of undegraded materials in the lysosomes due to abnormal lysosomal function. Inefficient degradative capability of the lysosomes has negative impact on the flux through the autophagic pathway, and therefore dysregulated autophagy in LSDs is emerging as a relevant disease mechanism. Pathology in the LSDs is generally early-onset, severe and life-limiting but current therapies are limited or absent; recognizing common autophagy defects in the LSDs raises new possibilities for therapy. In this review, we describe the mechanisms by which LSDs occur, focusing on perturbations in the autophagy pathway and present the latest data supporting the development of novel therapeutic approaches related to the modulation of autophagy.</jats:p

    Evaluation of some cell death features by real time real space microscopy

    No full text
    In the past few years, the investigation of many cell death features, especially ones associated with changes in Delta psi(m), have gained an important insights with the development of high-resolution fluorescence microscopy. With the use of real time real space measurements, it was possible to perform dynamic studies not only to investigate the location of the organelles, but also to follow changes in transport mechanism, such as Ca(2+) concentration in different subcellular compartments. in addition, this technique has been used for the simultaneous tracking of organelle location, ion measurements, and Delta psi(m), which clearly contributed to further understanding mechanisms related to the control of cell death. This chapter describes the methodology employed to study changes in Delta psi(m), Bax transtocation, and Ca(2+) measurements upon apoptotic induction. It also details the new technique developed and employed in our laboratory to measure Ca(2+) signaling in brain slices by confocal microscopy. This method has been applied to investigate real time real space studies in different models of neurodegenerative processes, such as Huntington's disease and aging.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo, Sch Med, Dept Pharmacol, São Paulo, BrazilUSC, Med Univ S Carolina, Dept Biochem & Mol Biol, Charleston, SC USAUniversidade Federal de São Paulo, Sch Med, Dept Pharmacol, São Paulo, BrazilWeb of Scienc

    New Avenues for the Treatment of Huntington’s Disease

    No full text
    Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HD gene. The disease is characterized by neurodegeneration, particularly in the striatum and cortex. The first symptoms usually appear in mid-life and include cognitive deficits and motor disturbances that progress over time. Despite being a genetic disorder with a known cause, several mechanisms are thought to contribute to neurodegeneration in HD, and numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. Although current clinical trials may lead to the identification or refinement of treatments that are likely to improve the quality of life of those living with HD, major efforts continue to be invested at the pre-clinical level, with numerous studies testing novel approaches that show promise as disease-modifying strategies. This review offers a detailed overview of the currently approved treatment options for HD and the clinical trials for this neurodegenerative disorder that are underway and concludes by discussing potential disease-modifying treatments that have shown promise in pre-clinical studies, including increasing neurotropic support, modulating autophagy, epigenetic and genetic manipulations, and the use of nanocarriers and stem cells.Medicine, Faculty ofOther UBCReviewedOthe

    Glutathione redox cycle dysregulation in Huntington’s disease knock-in striatal cells

    Get PDF
    Huntington’s disease (HD) is a CAG repeat disorder affecting the HD gene, which encodes for huntingtin (Htt) and is characterized by prominent cell death in the striatum. Oxidative stress was previously implicated in HD neurodegeneration, but the role of the major endogenous antioxidant system, the glutathione redox cycle, has been less studied following expression of full-length mutant Htt (FL-mHtt). Thus, in this work we analyzed the glutathione system in striatal cells derived from HD knock-in mice expressing mutant Htt versus wild-type cells. Mutant cells showed increased intracellular reactive oxygen species (ROS) and caspase-3 activity, which were significantly prevented following treatment with glutathione ethyl ester. Interestingly, mutant cells exhibited an increase in intracellular levels of both reduced and oxidized forms of glutathione, and enhanced activities of glutathione peroxidase (GPx) and glutathione reductase (GRed). Furthermore, glutathione-S-transferase (GST) and γ-glutamyl transpeptidase (γ–GT) activities were also increased in mutant cells. Nevertheless, glutamate-cysteine ligase (GCL) and glutathione synthetase (GS) activities and levels of GCL catalytic subunit were decreased in cells expressing FL-mHtt, highly suggesting decreased de novo synthesis of glutathione. Enhanced intracellular total glutathione, despite decreased synthesis, could be explained by decreased extracellular glutathione in mutant cells. This occurred concomitantly with decreased mRNA expression levels and activity of the multidrug resistance protein 1 (Mrp1), a transport protein that mediates cellular export of glutathione disulfide and glutathione conjugates. Additionally, inhibition of Mrp1 enhanced intracellular GSH in wild-type cells only. These data suggest that FL-mHtt affects the export of glutathione by decreasing the expression of Mrp1. Data further suggest that boosting of GSH-related antioxidant defense mechanisms induced by FL-mHtt is insufficient to counterbalance increased ROS formation and emergent apoptotic features in HD striatal cells

    Histone Deacetylase Inhibitors Protect Against Pyruvate Dehydrogenase Dysfunction in Huntington's Disease

    Get PDF
    Transcriptional deregulation and changes in mitochondrial bioenergetics, including pyruvate dehydrogenase (PDH) dysfunction, have been described in Huntington's disease (HD). We showed previously that the histone deacetylase inhibitors (HDACIs) trichostatin A and sodium butyrate (SB) ameliorate mitochondrial function in cells expressing mutant huntingtin. In this work, we investigated the effect of HDACIs on the regulation of PDH activity in striatal cells derived from HD knock-in mice and YAC128 mice. Mutant cells exhibited decreased PDH activity and increased PDH E1alpha phosphorylation/inactivation, accompanied by enhanced protein levels of PDH kinases 1 and 3 (PDK1 and PDK3). Exposure to dichloroacetate, an inhibitor of PDKs, increased mitochondrial respiration and decreased production of reactive oxygen species in mutant cells, emphasizing PDH as an interesting therapeutic target in HD. Treatment with SB and sodium phenylbutyrate, another HDACI, recovered cell viability and overall mitochondrial metabolism in mutant cells. Exposure to SB also suppressed hypoxia-inducible factor-1 (HIF-1α) stabilization and decreased the transcription of the two most abundant PDK isoforms, PDK2 and PDK3, culminating in increased PDH activation in mutant cells. Concordantly, PDK3 knockdown improved mitochondrial function, emphasizing the role of PDK3 inactivation on the positive effects achieved by SB treatment. YAC128 mouse brain presented higher mRNA levels of PDK1-3 and PDH phosphorylation and decreased energy levels that were significantly ameliorated after SB treatment. Furthermore, enhanced motor learning and coordination were observed in SB-treated YAC128 mice. These results suggest that HDACIs, particularly SB, promote the activity of PDH in the HD brain, helping to counteract HD-related deficits in mitochondrial bioenergetics and motor function.SIGNIFICANCE STATEMENT The present work provides a better understanding of mitochondrial dysfunction in Huntington's disease (HD) by showing that the pyruvate dehydrogenase (PDH) complex is a promising therapeutic target. In particular, the histone deacetylase inhibitor sodium butyrate (SB) may indirectly (through reduced hypoxia-inducible factor 1 alpha stabilization) decrease the expression of the most abundant PDH kinase isoforms (e.g., PDK3), ameliorating PDH activity and mitochondrial metabolism and further affecting motor behavior in HD mice, thus constituting a promising agent for HD neuroprotective treatment.FCT, Santa Casa da Misericórdia de Lisboa (SCML), Fundação Luso-Americana para o Desenvolvimento (FLAD) Life Scienc

    Activation of IGF-1 and Insulin Signaling Pathways Ameliorate Mitochondrial Function and Energy Metabolism in Huntington’s Disease Human Lymphoblasts

    No full text
    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts
    corecore