77 research outputs found

    Advantages of cone beam computed tomography (CBCT) in the orthodontic treatment planning of cleidocranial dysplasia patients: a case report

    Get PDF
    Our aim was to discuss, by presenting a case, the possibilities connected to the use of a CBCT exam in the dental evaluation of patients with Cleidocranial Dysplasia (CCD), an autosomal dominant skeletal dysplasia with delayed exfoliation of deciduous and eruption of permanent teeth and multiple supernumeraries, often impacted. We think that CBCT in this patient was adequate to accurately evaluate impacted teeth position and anatomy, resulting thus useful both in the diagnostic process and in the treatment planning, with an important reduction in the radiation dose absorbed by the patient

    Dimethyl Sulfoxide Promotes the Multiple Functions of the Tumor Suppressor HLJ1 through Activator Protein-1 Activation in NSCLC Cells

    Get PDF
    Background: Dimethyl sulfoxide (DMSO) is an amphipathic molecule that displays a diversity of antitumor activities. Previous studies have demonstrated that DMSO can modulate AP-1 activity and lead to cell cycle arrest at the G1 phase. HLJ1 is a newly identified tumor and invasion suppressor that inhibits tumorigenesis and cancer metastasis. Its transcriptional activity is regulated by the transcription factor AP-1. However, the effects of DMSO on HLJ1 are still unknown. In the present study, we investigate the antitumor effects of DMSO through HLJ1 induction and demonstrate the mechanisms involved. Methods and Findings: Low-HLJ1-expressing highly invasive CL1–5 lung adenocarcinoma cells were treated with various concentrations of DMSO. We found that DMSO can significantly inhibit cancer cell invasion, migration, proliferation, and colony formation capabilities through upregulation of HLJ1 in a concentration-dependent manner, whereas ethanol has no effect. In addition, the HLJ1 promoter and enhancer reporter assay revealed that DMSO transcriptionally upregulates HLJ1 expression through an AP-1 site within the HLJ1 enhancer. The AP-1 subfamily members JunD and JunB were significantly upregulated by DMSO in a concentration-dependent manner. Furthermore, pretreatment with DMSO led to a significant increase in the percentage of UV-induced apoptotic cells. Conclusions: Our results suggest that DMSO may be an important stimulator of the tumor suppressor protein HLJ1 throug

    Human Neural Stem Cells Over-Expressing VEGF Provide Neuroprotection, Angiogenesis and Functional Recovery in Mouse Stroke Model

    Get PDF
    BACKGROUND: Intracerebral hemorrhage (ICH) is a lethal stroke type. As mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs) selectively migrate to the brain and induce behavioral recovery in rat ICH model, and that combined administration of NSCs and vascular endothelial growth factor (VEGF) results in improved structural and functional outcome from cerebral ischemia. METHODS AND FINDINGS: We postulated that human NSCs overexpressing VEGF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs, increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by unilateral injection of bacterial collagenase into striatum. HB1.F3.VEGF human NSC line produced an amount of VEGF four times higher than parental F3 cell line in vitro, and induced behavioral improvement and 2–3 fold increase in cell survival at two weeks and eight weeks post-transplantation. CONCLUSIONS: Brain transplantation of F3 human NSCs over-expressing VEGF near ICH lesion sites provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results suggest a possible application of the human neural stem cell line, which is genetically modified to over-express VEGF, as a therapeutic agent for ICH-stroke

    Eicosanoid Release Is Increased by Membrane Destabilization and CFTR Inhibition in Calu-3 Cells

    Get PDF
    The antiinflammatory protein annexin-1 (ANXA1) and the adaptor S100A10 (p11), inhibit cytosolic phospholipase A2 (cPLA2α) by direct interaction. Since the latter is responsible for the cleavage of arachidonic acid at membrane phospholipids, all three proteins modulate eicosanoid production. We have previously shown the association of ANXA1 expression with that of CFTR, the multifactorial protein mutated in cystic fibrosis. This could in part account for the abnormal inflammatory status characteristic of this disease. We postulated that CFTR participates in the regulation of eicosanoid release by direct interaction with a complex containing ANXA1, p11 and cPLA2α. We first analyzed by plasmon surface resonance the in vitro binding of CFTR to the three proteins. A significant interaction between p11 and the NBD1 domain of CFTR was found. We observed in Calu-3 cells a rapid and partial redistribution of all four proteins in detergent resistant membranes (DRM) induced by TNF-α. This was concomitant with increased IL-8 synthesis and cPLA2α activation, ultimately resulting in eicosanoid (PGE2 and LTB4) overproduction. DRM destabilizing agent methyl-β-cyclodextrin induced further cPLA2α activation and eicosanoid release, but inhibited IL-8 synthesis. We tested in parallel the effect of short exposure of cells to CFTR inhibitors Inh172 and Gly-101. Both inhibitors induced a rapid increase in eicosanoid production. Longer exposure to Inh172 did not increase further eicosanoid release, but inhibited TNF-α-induced relocalization to DRM. These results show that (i) CFTR may form a complex with cPLA2α and ANXA1 via interaction with p11, (ii) CFTR inhibition and DRM disruption induce eicosanoid synthesis, and (iii) suggest that the putative cPLA2/ANXA1/p11/CFTR complex may participate in the modulation of the TNF-α-induced production of eicosanoids, pointing to the importance of membrane composition and CFTR function in the regulation of inflammation mediator synthesis

    The Human Sweet Tooth

    Get PDF
    Humans love the taste of sugar and the word "sweet" is used to describe not only this basic taste quality but also something that is desirable or pleasurable, e.g., la dolce vita. Although sugar or sweetened foods are generally among the most preferred choices, not everyone likes sugar, especially at high concentrations. The focus of my group's research is to understand why some people have a sweet tooth and others do not. We have used genetic and molecular techniques in humans, rats, mice, cats and primates to understand the origins of sweet taste perception. Our studies demonstrate that there are two sweet receptor genes (TAS1R2 and TAS1R3), and alleles of one of the two genes predict the avidity with which some mammals drink sweet solutions. We also find a relationship between sweet and bitter perception. Children who are genetically more sensitive to bitter compounds report that very sweet solutions are more pleasant and they prefer sweet carbonated beverages more than milk, relative to less bitter-sensitive peers. Overall, people differ in their ability to perceive the basic tastes, and particular constellations of genes and experience may drive some people, but not others, toward a caries-inducing sweet diet. Future studies will be designed to understand how a genetic preference for sweet food and drink might contribute to the development of dental caries

    Viral, bacterial, and fungal infections of the oral mucosa:Types, incidence, predisposing factors, diagnostic algorithms, and management

    Get PDF
    corecore