153 research outputs found

    Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells

    Get PDF
    Š 2015 Macmillan Publishers Limited. All rights reserved. microRNA-34a (miR-34a) and sirtuin 1 (SirT1) have been extensively studied in tumour biology and longevityaging, but little is known about their functional roles in smooth muscle cell (SMC) differentiation from pluripotent stem cells. Using well-established SMC differentiation models, we have demonstrated that miR-34a has an important role in SMC differentiation from murine and human embryonic stem cells. Surprisingly, deacetylase sirtuin 1 (SirT1), one of the top predicted targets, was positively regulated by miR-34a during SMC differentiation. Mechanistically, we demonstrated that miR-34a promoted differentiating stem cells' arrest at G0G1 phase and observed a significantly decreased incorporation of miR-34a and SirT1 RNA into Ago2-RISC complex upon SMC differentiation. Importantly, we have identified SirT1 as a transcriptional activator in the regulation of SMC gene programme. Finally, our data showed that SirT1 modulated the enrichment of H3K9 tri-methylation around the SMC gene-promoter regions. Taken together, our data reveal a specific regulatory pathway that miR-34a positively regulates its target gene SirT1 in a cellular context-dependent and sequence-specific manner and suggest a functional role for this pathway in SMC differentiation from stem cells in vitro and in vivo

    Misaligned Protoplanetary Disks in a Young Binary System

    Get PDF
    Many extrasolar planets follow orbits that differ from the nearly coplanar and circular orbits found in our solar system; orbits may be eccentric or inclined with respect to the host star's equator, and the population of giant planets orbiting close to their host stars suggests significant orbital migration. There is currently no consensus on what produces such orbits. Theoretical explanations often invoke interactions with a binary companion star on an orbit that is inclined relative to the planet's orbital plane. Such mechanisms require significant mutual inclinations between planetary and binary star orbital planes. The protoplanetary disks in a few young binaries are misaligned, but these measurements are sensitive only to a small portion of the inner disk, and the three-dimensional misalignment of the bulk of the planet-forming disk mass has hitherto not been determined. Here we report that the protoplanetary disks in the young binary system HK Tau are misaligned by 60{\deg}-68{\deg}, so one or both disks are significantly inclined to the binary orbital plane. Our results demonstrate that the necessary conditions exist for misalignment-driven mechanisms to modify planetary orbits, and that these conditions are present at the time of planet formation, apparently due to the binary formation process.Comment: Published in Nature, July 31 2014. 18 pages. This version has slight differences from the final published version. Final version is available at http://www.nature.com/nature/journal/v511/n7511/full/nature13521.htm

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    Thermodynamic State Ensemble Models of cis-Regulation

    Get PDF
    A major goal in computational biology is to develop models that accurately predict a gene's expression from its surrounding regulatory DNA. Here we present one class of such models, thermodynamic state ensemble models. We describe the biochemical derivation of the thermodynamic framework in simple terms, and lay out the mathematical components that comprise each model. These components include (1) the possible states of a promoter, where a state is defined as a particular arrangement of transcription factors bound to a DNA promoter, (2) the binding constants that describe the affinity of the protein–protein and protein–DNA interactions that occur in each state, and (3) whether each state is capable of transcribing. Using these components, we demonstrate how to compute a cis-regulatory function that encodes the probability of a promoter being active. Our intention is to provide enough detail so that readers with little background in thermodynamics can compose their own cis-regulatory functions. To facilitate this goal, we also describe a matrix form of the model that can be easily coded in any programming language. This formalism has great flexibility, which we show by illustrating how phenomena such as competition between transcription factors and cooperativity are readily incorporated into these models. Using this framework, we also demonstrate that Michaelis-like functions, another class of cis-regulatory models, are a subset of the thermodynamic framework with specific assumptions. By recasting Michaelis-like functions as thermodynamic functions, we emphasize the relationship between these models and delineate the specific circumstances representable by each approach. Application of thermodynamic state ensemble models is likely to be an important tool in unraveling the physical basis of combinatorial cis-regulation and in generating formalisms that accurately predict gene expression from DNA sequence

    HPV infection and number of lifetime sexual partners are strong predictors for ‘natural’ regression of CIN 2 and 3

    Get PDF
    The aim of this paper was to evaluate the factors that predict regression of untreated CIN 2 and 3. A total of 93 patients with colposcopic persistent CIN 2 and 3 lesions after biopsy were followed for 6 months. Human papillomavirus (HPV) types were determined by polymerase chain reaction at enrolment. We analysed the biologic and demographic predictors of natural regression using univariate and multivariate methods. The overall regression rate was 52% (48 out of 93), including 58% (22 out of 38) of CIN 2 and 47% (26 out of 55) of CIN 3 lesions (P=0.31 for difference). Human papillomavirus was detected in 84% (78 out of 93) of patients. In univariate analysis, 80% (12 out of 15) of lesions without HPV regressed compared to 46% (36 out of 78) of lesions with HPV infection (P=0.016). Women without HPV and those who had a resolution of HPV had a four-fold higher chance of regression than those with persistent HPV (relative odds=3.5, 95% CI=1.4-8.6). Women with five or fewer lifetime sexual partners had higher rates of regression than women with more than five partners (P=0.003). In multivariate analysis, HPV status and number of sexual partners remained as significant independent predictors of regression. In conclusion, HPV status and number of lifetime sexual partners were strongly predictive of regression of untreated CIN 2 and 3

    A Conserved Developmental Patterning Network Produces Quantitatively Different Output in Multiple Species of Drosophila

    Get PDF
    Differences in the level, timing, or location of gene expression can contribute to alternative phenotypes at the molecular and organismal level. Understanding the origins of expression differences is complicated by the fact that organismal morphology and gene regulatory networks could potentially vary even between closely related species. To assess the scope of such changes, we used high-resolution imaging methods to measure mRNA expression in blastoderm embryos of Drosophila yakuba and Drosophila pseudoobscura and assembled these data into cellular resolution atlases, where expression levels for 13 genes in the segmentation network are averaged into species-specific, cellular resolution morphological frameworks. We demonstrate that the blastoderm embryos of these species differ in their morphology in terms of size, shape, and number of nuclei. We present an approach to compare cellular gene expression patterns between species, while accounting for varying embryo morphology, and apply it to our data and an equivalent dataset for Drosophila melanogaster. Our analysis reveals that all individual genes differ quantitatively in their spatio-temporal expression patterns between these species, primarily in terms of their relative position and dynamics. Despite many small quantitative differences, cellular gene expression profiles for the whole set of genes examined are largely similar. This suggests that cell types at this stage of development are conserved, though they can differ in their relative position by up to 3–4 cell widths and in their relative proportion between species by as much as 5-fold. Quantitative differences in the dynamics and relative level of a subset of genes between corresponding cell types may reflect altered regulatory functions between species. Our results emphasize that transcriptional networks can diverge over short evolutionary timescales and that even small changes can lead to distinct output in terms of the placement and number of equivalent cells

    A Test of Evolutionary Policing Theory with Data from Human Societies

    Get PDF
    In social groups where relatedness among interacting individuals is low, cooperation can often only be maintained through mechanisms that repress competition among group members. Repression-of-competition mechanisms, such as policing and punishment, seem to be of particular importance in human societies, where cooperative interactions often occur among unrelated individuals. In line with this view, economic games have shown that the ability to punish defectors enforces cooperation among humans. Here, I examine a real-world example of a repression-of-competition system, the police institutions common to modern human societies. Specifically, I test evolutionary policing theory by comparing data on policing effort, per capita crime rate, and similarity (used as a proxy for genetic relatedness) among citizens across the 26 cantons of Switzerland. This comparison revealed full support for all three predictions of evolutionary policing theory. First, when controlling for policing efforts, crime rate correlated negatively with the similarity among citizens. This is in line with the prediction that high similarity results in higher levels of cooperative self-restraint (i.e. lower crime rates) because it aligns the interests of individuals. Second, policing effort correlated negatively with the similarity among citizens, supporting the prediction that more policing is required to enforce cooperation in low-similarity societies, where individuals' interests diverge most. Third, increased policing efforts were associated with reductions in crime rates, indicating that policing indeed enforces cooperation. These analyses strongly indicate that humans respond to cues of their social environment and adjust cheating and policing behaviour as predicted by evolutionary policing theory

    Die Stoffwechselwirkungen der SchilddrĂźsenhormone

    Get PDF

    Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay, and bugey-3 experiments

    Get PDF
    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin^2 2θμe are set over 6 orders of magnitude in the sterile mass-squared splitting Δm^2 41. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm^2 41 < 0.8 eV^2 at 95% CLs
    • …
    corecore