5,154 research outputs found

    Density Functional for Anisotropic Fluids

    Full text link
    We propose a density functional for anisotropic fluids of hard body particles. It interpolates between the well-established geometrically based Rosenfeld functional for hard spheres and the Onsager functional for elongated rods. We test the new approach by calculating the location of the the nematic-isotropic transition in systems of hard spherocylinders and hard ellipsoids. The results are compared with existing simulation data. Our functional predicts the location of the transition much more accurately than the Onsager functional, and almost as good as the theory by Parsons and Lee. We argue that it might be suited to study inhomogeneous systems.Comment: To appear in J. Physics: Condensed Matte

    Radiation Monitoring in Mixed Environments at CERN: from the IRRAD6 Facility to the LHC Experiments

    Get PDF
    RadFET and p-i-n diode semiconductor dosimeters from different manufacturers will be used for radiation monitoring at the Experiments of the CERN LHC accelerator. In this work these sensors were exposed over three months in the CERN-IRRAD6 facility that provides mixed high-energy particles at low rates. The aim was to validate the operation of such sensors in a radiation field where the conditions are close to the ones expected inside full working LHC particle detectors. The results of this long-term irradiation campaign are presented, discussed and compared with measurements by other dosimetric means as well as Monte Carlo simulations. Finally, the integration of several dosimetric devices in one sensor carrier is also presented

    Apparent Fractality Emerging from Models of Random Distributions

    Full text link
    The fractal properties of models of randomly placed nn-dimensional spheres (nn=1,2,3) are studied using standard techniques for calculating fractal dimensions in empirical data (the box counting and Minkowski-sausage techniques). Using analytical and numerical calculations it is shown that in the regime of low volume fraction occupied by the spheres, apparent fractal behavior is observed for a range of scales between physically relevant cut-offs. The width of this range, typically spanning between one and two orders of magnitude, is in very good agreement with the typical range observed in experimental measurements of fractals. The dimensions are not universal and depend on density. These observations are applicable to spatial, temporal and spectral random structures. Polydispersivity in sphere radii and impenetrability of the spheres (resulting in short range correlations) are also introduced and are found to have little effect on the scaling properties. We thus propose that apparent fractal behavior observed experimentally over a limited range may often have its origin in underlying randomness.Comment: 19 pages, 12 figures. More info available at http://www.fh.huji.ac.il/~dani

    The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids

    Full text link
    A liquid can exist under conditions of thermodynamic stability or metastability within boundaries defined by the liquid-gas spinodal and the glass transition line. The relationship between these boundaries has been investigated previously using computer simulations, the energy landscape formalism, and simplified model calculations. We calculate these stability boundaries semi-analytically for a model glass forming liquid, employing accurate liquid state theory and a first-principles approach to the glass transition. These boundaries intersect at a finite temperature, consistent with previous simulation-based studies.Comment: Minor text revisions. Fig.s 4, 5 update

    Nontrivial eigenvalues of the Liouvillian of an open quantum system

    Full text link
    We present methods of finding complex eigenvalues of the Liouvillian of an open quantum system. The goal is to find eigenvalues that cannot be predicted from the eigenvalues of the corresponding Hamiltonian. Our model is a T-type quantum dot with an infinitely long lead. We suggest the existence of the non-trivial eigenvalues of the Liouvillian in two ways: one way is to show that the original problem reduces to the problem of a two-particle Hamiltonian with a two-body interaction and the other way is to show that diagram expansion of the Green's function has correlation between the bra state and the ket state. We also introduce the integral equations equivalent to the original eigenvalue problem.Comment: 5 pages, 2 figures, proceeding

    Monte Carlo simulations of the screening potential of the Yukawa one-component plasma

    Full text link
    A Monte Carlo scheme to sample the screening potential H(r) of Yukawa plasmas notably at short distances is presented. This scheme is based on an importance sampling technique. Comparisons with former results for the Coulombic one-component plasma are given. Our Monte Carlo simulations yield an accurate estimate of H(r) as well for short range and long range interparticle distances.Comment: to be published in Journal of Physics A: Mathematical and Genera

    The Geant4-DNA project

    Get PDF
    The Geant4-DNA project proposes to develop an open-source simulation software based and fully included in the general-purpose Geant4 Monte Carlo simulation toolkit. The main objective of this software is to simulate biological damages induced by ionising radiation at the cellular and sub-cellular scale. This project was originally initiated by the European Space Agency for the prediction of deleterious effects of radiation that may affect astronauts during future long duration space exploration missions. In this paper, the Geant4-DNA collaboration presents an overview of the whole ongoing project, including its most recent developments already available in the last Geant4 public release (9.3 BETA), as well as an illustration example simulating the direct irradiation of a chromatin fibre. Expected extensions involving several research domains, such as particle physics, chemistry and cellular and molecular biology, within a fully interdiciplinary activity of the Geant4 collaboration are also discussed.Comment: presented by S. Incerti at the ASIA SIMULATION CONFERENCE 2009, October 7-9, 2009, Ritsumeikan University, Shiga, Japa

    Fundamental measure theory for lattice fluids with hard core interactions

    Full text link
    We present the extension of Rosenfeld's fundamental measure theory to lattice models by constructing a density functional for d-dimensional mixtures of parallel hard hypercubes on a simple hypercubic lattice. The one-dimensional case is exactly solvable and two cases must be distinguished: all the species with the same lebgth parity (additive mixture), and arbitrary length parity (nonadditive mixture). At the best of our knowledge, this is the first time that the latter case is considered. Based on the one-dimensional exact functional form, we propose the extension to higher dimensions by generalizing the zero-dimensional cavities method to lattice models. This assures the functional to have correct dimensional crossovers to any lower dimension, including the exact zero-dimensional limit. Some applications of the functional to particular systems are also shown.Comment: 22 pages, 7 figures, needs IOPP LaTeX styles file

    CTGF (IGFBP-rP2) is specifically expressed in malignant lymphoblasts of patients with acute lymphoblastic leukaemia (ALL)

    Get PDF
    Connective tissue growth factor (CTGF) is a major chemotactic and mitogenic factor for connective tissue cells. The amino acid sequence shares an overall 28–38% identity to IGFBPs and contains critical conserved sequences in the amino terminus. It has been demonstrated that human CTGF specifically binds IGFs with low affinity and is considered to be a member of the IGFBP superfamily (IGFBP-rP2). In the present study, the expression of CTGF (IGFBP-rP2) in human leukaemic lymphoblasts from children with acute lymphoblastic leukaemia (ALL) was investigated. RNA samples from tumour clones enriched by ficoll separation of bone marrow or peripheral blood mononuclear cells (MNC) from 107 patients with childhood ALL at diagnosis and 57 adult patients with chronic myeloid leukaemia (CML) were studied by RT-PCR. In addition MNC samples from children with IDDM and cord blood samples from healthy newborns were investigated as control groups. Sixty-one percent of the patients with ALL (65 of 107) were positive for CTGF (IGFBP-rP2) expression. In the control groups, no expression of CTGF (IGFBP-rP2) in peripheral MNC was detected, and in the group of adult CML patients only 3.5% (2 of 57) were positive for this gene. The role of CTGF (IGFBP-rP2) in lymphoblastic leukaemogenesis requires further evaluation, as does its potential utility as a tumour marker. © 2000 Cancer Research Campaig
    • …
    corecore