4,017 research outputs found

    Suppressing Unwanted Autobiographical Memories Reduces Their Automatic Influences: Evidence from Electrophysiology and an Implicit Autobiographical Memory Test

    Get PDF
    The present study investigated the extent to which people can suppress unwanted autobiographical memories in a mock crime memory detection context. Participants encoded sensorimotor-rich memories by enacting a lab crime (stealing a ring) and received direct suppression instructions so as to evade guilt detection in a brainwave-based concealed information test. Aftereffects of suppression on automatic memory processes were measured in an autobiographical implicit association test (aIAT). Results showed that suppression attenuated brainwave activity (P300) that is associated with crime-relevant memory retrieval, rendering innocent and guilty/suppression participants indistinguishable. However, guilty/suppression and innocent participants could nevertheless be discriminated via the late posterior negative slow wave, which may reflect the need to monitor response conflict arising between voluntary suppression and automatic recognition processes. Lastly, extending recent findings that suppression can impair implicit memory processes; we provide novel evidence that suppression reduces automatic cognitive biases that are otherwise associated with actual autobiographical memories

    Dimension on Discrete Spaces

    Full text link
    In this paper we develop some combinatorial models for continuous spaces. In this spirit we study the approximations of continuous spaces by graphs, molecular spaces and coordinate matrices. We define the dimension on a discrete space by means of axioms, and the axioms are based on an obvious geometrical background. This work presents some discrete models of n-dimensional Euclidean spaces, n-dimensional spheres, a torus and a projective plane. It explains how to construct new discrete spaces and describes in this connection several three-dimensional closed surfaces with some topological singularities It also analyzes the topology of (3+1)-spacetime. We are also discussing the question by R. Sorkin [19] about how to derive the system of simplicial complexes from a system of open covering of a topological space S.Comment: 16 pages, 8 figures, Latex. Figures are not included, available from the author upon request. Preprint SU-GP-93/1-1. To appear in "International Journal of Theoretical Physics

    A new approach to the inverse problem for current mapping in thin-film superconductors

    Full text link
    A novel mathematical approach has been developed to complete the inversion of the Biot-Savart law in one- and two-dimensional cases from measurements of the perpendicular component of the magnetic field using the well-developed Magneto-Optical Imaging technique. Our approach, especially in the 2D case, is provided in great detail to allow a straightforward implementation as opposed to those found in the literature. Our new approach also refines our previous results for the 1D case [Johansen et al., Phys. Rev. B 54, 16264 (1996)], and streamlines the method developed by Jooss et al. [Physica C 299, 215 (1998)] deemed as the most accurate if compared to that of Roth et al. [J. Appl. Phys. 65, 361 (1989)]. We also verify and streamline the iterative technique, which was developed following Laviano et al. [Supercond. Sci. Technol. 16, 71 (2002)] to account for in-plane magnetic fields caused by the bending of the applied magnetic field due to the demagnetising effect. After testing on magneto-optical images of a high quality YBa2Cu3O7 superconducting thin film, we show that the procedure employed is effective

    Proposal for a cumulant-based Bell test for mesoscopic junctions

    Full text link
    The creation and detection of entanglement in solid state electronics is of fundamental importance for quantum information processing. We prove that second-order quantum correlations can be always interpreted classically and propose a general test of entanglement based on the violation of a classically derived inequality for continuous variables by fourth-order quantum correlation functions. Our scheme provides a way to prove the existence of entanglement in a mesoscopic transport setup by measuring higher order cumulants without requiring the additional assumption of a single charge detectionComment: 6 pages, 1 figure, detailed proof of weak positivity and Bell-type inequalit

    Physical approximations for the nonlinear evolution of perturbations in dark energy scenarios

    Full text link
    The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy as well, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model, and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.Comment: 15 pages, 2 figure

    Quantum Fluctuations of a Coulomb potential

    Full text link
    Long-range properties of the two-point correlation function of the electromagnetic field produced by an elementary particle are investigated. Using the Schwinger-Keldysh formalism it is shown that this function is finite in the coincidence limit outside the region of particle localization. In this limit, the leading term in the long-range expansion of the correlation function is calculated explicitly, and its gauge independence is proved. The leading contribution turns out to be of zero order in the Planck constant, and the relative value of the root mean square fluctuation of the Coulomb potential is found to be 1/\sqrt{2}, confirming the result obtained previously within the S-matrix approach. It is shown also that in the case of a macroscopic body, the \hbar^0 part of the correlation function is suppressed by a factor 1/N, where N is the number of particles in the body. Relation of the obtained results to the problem of measurability of the electromagnetic field is mentioned.Comment: 15 pages, 2 figure

    Density functional theory for nearest-neighbor exclusion lattice gasses in two and three dimensions

    Full text link
    To speak about fundamental measure theory obliges to mention dimensional crossover. This feature, inherent to the systems themselves, was incorporated in the theory almost from the beginning. Although at first it was thought to be a consistency check for the theory, it rapidly became its fundamental pillar, thus becoming the only density functional theory which possesses such a property. It is straightforward that dimensional crossover connects, for instance, the parallel hard cube system (three-dimensional) with that of squares (two-dimensional) and rods (one-dimensional). We show here that there are many more connections which can be established in this way. Through them we deduce from the functional for parallel hard (hyper)cubes in the simple (hyper)cubic lattice the corresponding functionals for the nearest-neighbor exclusion lattice gases in the square, triangular, simple cubic, face-centered cubic, and body-centered cubic lattices. As an application, the bulk phase diagram for all these systems is obtained.Comment: 13 pages, 13 figures; needs revtex

    Depletion potential in hard-sphere mixtures: theory and applications

    Full text link
    We present a versatile density functional approach (DFT) for calculating the depletion potential in general fluid mixtures. In contrast to brute force DFT, our approach requires only the equilibrium density profile of the small particles {\em before} the big (test) particle is inserted. For a big particle near a planar wall or a cylinder or another fixed big particle the relevant density profiles are functions of a single variable, which avoids the numerical complications inherent in brute force DFT. We implement our approach for additive hard-sphere mixtures. By investigating the depletion potential for high size asymmetries we assess the regime of validity of the well-known Derjaguin approximation for hard-sphere mixtures and argue that this fails. We provide an accurate parametrization of the depletion potential in hard-sphere fluids which should be useful for effective Hamiltonian studies of phase behavior and colloid structure
    • 

    corecore