11 research outputs found

    Postexercise phosphocreatine recovery, an index of mitochondrial oxidative phosphorylation, is reduced in diabetic patients with lower extremity complications

    Get PDF
    To identify differences in postexercise phosphocreatine (PCr) recovery, an index of mitochondrial function, in diabetic patients with and without lower extremity complications. METHODS: We enrolled healthy control subjects and three groups of patients with type 2 diabetes mellitus: without complications, with peripheral neuropathy, and with both peripheral neuropathy and peripheral arterial disease. We used magnetic resonance spectroscopic measurements to perform continuous measurements of phosphorous metabolites (PCr and inorganic phosphate [Pi]) during a 3-minute graded exercise at the level of the posterior calf muscles (gastrocnemius and soleus muscles). Micro- and macrovascular reactivity measurements also were performed. RESULTS: The resting Pi/PCr ratio and PCr at baseline and the maximum reached during exercise were similar in all groups. The postexercise time required for recovery of Pi/PCr ratio and PCr levels to resting levels, an assessment of mitochondrial oxidative phosphorylation, was significantly higher in diabetic patients with neuropathy and those with both neuropathy and peripheral arterial disease (P < .01 for both measurements). These two groups also had higher levels of tumor necrosis factor-\u3b1 (P < .01) and granulocyte colony-stimulating factor (P < .05). Multiple regression analysis showed that only granulocyte colony-stimulating factor, osteoprotegerin, and tumor necrosis factor-\u3b1 were significant contributing factors in the variation of the Pi/PCr ratio recovery time. No associations were observed between micro- and macrovascular reactivity measurements and Pi/PCr ratio or PCr recovery time. CONCLUSIONS: Mitochondrial oxidative phosphorylation is impaired only in type 2 diabetes mellitus patients with neuropathy whether or not peripheral arterial disease is present and is associated with the increased proinflammatory state observed in these groups

    Figure 4

    No full text
    <p>a Plot of FSR versus age for young (squares) and old (triangles) healthy controls as well as T2DM subjects (circles); x's represent the group averages of the DM and the healthy controls (both young and old) and the bars represent standard deviations. b Plot of soleus T2* versus BMI for healthy and T2DM subjects. c Bar plot of soleus T2* change versus anterior tibilias, HbA1c, and lipid index (FRS) for the young and older healthy controls (YHC and OHC) and T2DM (DM) subjects scanned in this study.</p

    Figure 1

    No full text
    <p>a–f T2* weighted images and T2* maps of calves of a young healthy control (a,b), a 64 year old T2DM subject (c,d), and a 68 year old T2DM subject (e,f) acquired at 3T. g–h representative T2 maps of healthy (g) and T2DM (h) calves. Due to relatively long T2s of the subcutaneous lipid and bone marrow (∼115 ms), the contrast among the muscles was less dramatic than that of T2*.</p

    Figure 2

    No full text
    <p>a. T2* distribution among anterior tibialis, soleus, and gastrocnemius of young healthy controls (YHC), older age-matched healthy controls (OHC), and T2DM subjects (DM). The error bars represent the standard errors of the means. The difference between the control and the T2DM soleus is significant. The difference between the AT and S is not significant in healthy controls, but it is in T2DM subjects. b. T2 distribution among anterior tibialis, soleus, and gastrocnemius of young healthy controls (YHC), older age-matched healthy controls (OHC), and T2DM (DM). The error bars represent the standard errors of the means. The difference between the control and the T2DM soleus is significant. Compared to T2*, the most dramatic difference is the much longer T2 of the diabetic soleus than observed in either the young or older healthy controls.</p
    corecore