7 research outputs found

    Studies on the coastal ecology and management of the Nabq Protected Area, South Sinai, Egypt.

    Get PDF
    The dopaminergic system provides the basis for the interaction between motivation and cognition. It is triggered by the possibility of obtaining rewards to initiate the neurobehavioral adaptations necessary to achieve them by directing the information from motivational circuits to cognitive and action circuits. In drug addiction, the altered dopamine (DA) modulation of the meso-cortico-limbic reward circuitry, such as the prefrontal cortex (PFC), underlies the disproportionate motivational value of drug use at the expense of other nondrug reinforcers and the user''s loss of control over his/her drug intake. We examine how the magnitude of the reward affects goal-directed processes in healthy control (HC) subjects and abstinent cocaine dependent (ACD) patients by using functional magnetic resonance imaging (fMRI) during a counting Stroop task with blocked levels of monetary incentives of different magnitudes (€0, €0.01, €0.5, €1 or €1.5). Our results showed that increasing reward magnitude enhances (1) performance facilitation in both groups; (2) left dorsolateral prefrontal cortex (DLPFC) activity in HC and left superior occipital cortex activity in ACD; and (3) left DLPFC and left putamen connectivity in ACD compared to HC. Moreover, we observed that (4) dorsal striatal and pallidum activity was associated with craving and addiction severity during the parametric increases in the monetary reward. In conclusion, the brain response to gradients in monetary value was different in HC and ACD, but both groups showed improved task performance due to the possibility of obtaining greater monetary rewards

    Distance disintegration characterizes node-level topological dysfunctions in cocaine addiction

    Get PDF
    Previous investigations have used global graph theory measures in order to disentangle the complexity of the neural reorganizations occurring in cocaine use disorder (CUD). However, how these global topological alterations map into individual brain network areas remains unknown. In this study, we used resting state functional magnetic resonance imaging (fMRI) data to investigate node-level topological dysfunctions in CUD. The sample was composed of 32 individuals with CUD and 32 healthy controls, matched in age, years of education and intellectual functioning. Graph theory measures of optimal connectivity distance, node strength, nodal efficiency and clustering coefficient were estimated in each participant using voxel-wise functional connectivity connectomes. CUD individuals as compared with healthy controls showed higher optimal connectivity distances in ventral striatum, insula, cerebellum, temporal cortex, lateral orbitofrontal cortex, middle frontal cortex and left hippocampus. Furthermore, clinical measures quantifying severity of dependence were positively related with optimal connectivity distances in the right rolandic operculum and the right lateral orbitofrontal cortex, whereas length of abstinence was negatively associated with optimal connectivity distances in the right temporal pole and the left insula. Our results reveal a topological distancing of cognitive and affective related areas in addiction, suggesting an overall reduction in the communication capacity of these regions. © 2021 The Authors. Addiction Biology published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction

    Evidence for degraded low frequency verbal concepts in left resected temporal lobe epilepsy patients

    Get PDF
    According to a large neuropsychological and neuroimaging literature, the bilateral anterior temporal lobe (ATL) is a core region for semantic processing. It seems therefore surprising that semantic memory appears to be preserved in temporal lobe epilepsy (TLE) patients with unilateral ATL resection. However, recent work suggests that the bilateral semantic system is relatively robust against unilateral damage and semantic impairments under these circumstances only become apparent with low frequency specific concepts. In addition, neuroimaging studies have shown that the function of the left and right ATLs differ and therefore left or right ATL resection should lead to a different pattern of impairment. The current study investigated hemispheric differences in the bilateral semantic system by comparing left and right resected TLE patients during verbal semantic processing of low frequency concepts. Picture naming and semantic comprehension tasks with varying word frequencies were included to investigate the pattern of impairment. Left but not right TLE patients showed impaired semantic processing, which was particularly apparent on low frequency items. This indicates that, for verbal information, the bilateral semantic system is more sensitive to damage in the left compared to the right ATL, which is in line with theories that attribute a more prominent role to the left ATL due to connections with pre-semantic verbal regions
    corecore