195 research outputs found

    Polyethylene Glycol Preconditioning: An Effective Strategy to Prevent Liver Ischemia Reperfusion Injury

    Get PDF
    Hepatic ischemia reperfusion injury (IRI) is an inevitable clinical problem for liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proven their effectiveness in various in vivo and in vitro models of tissue injury. The present study aims to investigate whether the intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) could be an effective strategy for rat liver preconditioning against IRI. PEG 35 was intravenously administered at 2 and 10 mg/kg to male Sprague Dawley rats. Then, rats were subjected to one hour of partial ischemia (70%) followed by two hours of reperfusion. The results demonstrated that PEG 35 injected intravenously at 10 mg/kg protected efficiently rat liver against the deleterious effects of IRI. This was evidenced by the significant decrease in transaminases levels and the better preservation of mitochondrial membrane polarization. Also, PEG 35 preserved hepatocyte morphology as reflected by an increased F-actin/G-actin ratio and confocal microscopy findings. In addition, PEG 35 protective mechanisms were correlated with the activation of the prosurvival kinase Akt and the cytoprotective factor AMPK and the inhibition of apoptosis. Thus, PEG may become a suitable agent to attempt pharmacological preconditioning against hepatic IRI.The work was financed by the Fondo de Investigaciones Sanitarias (FIS PI12/00519; FIS PI15/00110), Spain. Eirini Pantazi is fellowship-holder of AGAUR (2012FI B00382), Generalitat de Catalunya, Barcelona, Spain.Peer Reviewe

    Hypoxia inducible factor-1α accumulation in steatotic liver preservation: Role of nitric oxide

    Get PDF
    Open-Acces journal.-- et al.[Aim]: To examine the relevance of hypoxia inducible factor (HIF-1) and nitric oxide (NO) on the preservation of fatty liver against cold ischemia-reperfusion injury (IRI). Methods]: We used an isolated perfused rat liver model and we evaluated HIF-1α in steatotic and non-steatotic livers preserved for 24 h at 4°C in University of Wisconsin and IGL-1 solutions, and then subjected to 2 h of normothermic reperfusion. After normoxic reperfusion, liver enzymes, bile production, bromosulfophthalein clearance, as well as HIF-1α and NO [endothelial NO synthase (eNOS) activity and nitrites/nitrates] were also measured. Other factors associated with the higher susceptibility of steatotic livers to IRI, such as mitochondrial damage and vascular resistance were evaluated. [Results]: A significant increase in HIF-1α was found in steatotic and non-steatotic livers preserved in IGL-1 after cold storage. Livers preserved in IGL-1 showed a significant attenuation of liver injury and improvement in liver function parameters. These benefits were enhanced by the addition of trimetazidine (an antiischemic drug), which induces NO and eNOS activation, to IGL-1 solution. In normoxic reperfusion, the presence of NO favors HIF-1α accumulation, promoting also the activation of other cytoprotective genes, such as hemeoxygenase- 1. [Concluison]: We found evidence for the role of the HIF-1α/NO system in fatty liver preservation, especially when IGL-1 solution is used. © 2010 Baishideng.Supported by The Ministerio de de Sanidad y Consumo (PI 081988), CIBER-EHD, Instituto Carlos III, Madrid and Ministerio de Asuntos Exteriores y de Cooperación Internacionales (A/020255/08 and A/02987/09), MadridPeer Reviewe

    Ubiquitin–proteasome system inhibitors and AMPK regulation in hepatic cold ischaemia and reperfusion injury: possible mechanisms

    Get PDF
    In the present Hypothesis article, we summarize and present data from the literature that support our hypothesis on the potential mechanisms by which UPS (ubiquitin–proteasome system) inhibitors reduce I/R (ischaemia/reperfusion) injury in the liver. I/R is the main cause of primary liver failure and, consequently, minimizing the detrimental effects of this process could increase the number of suitable transplantation grafts and also enhance the survival rate of patients after liver transplantation. A potential strategy to reduce I/R injury is the use of UPS inhibitors either as additives to preservation solutions or as drugs administered to patients. However, there is still controversy over whether the use of UPS inhibitors is beneficial or deleterious with regard to liver injury. From our experience and the few studies that have investigated the role of UPS in hepatic I/R, we believe that the use of UPS inhibitors is a potential strategy to reduce I/R injury in liver transplantation and graft preservation. We hypothesize that one of the main mechanisms of action of UPS inhibitors may be the up-regulation of AMPK (AMP-activated protein kinase) activity and the consequent down-regulation of mTOR (mammalian target of rapamycin), which may finally influence autophagy and preserve the energy state of the cell

    Ubiquitin-proteasome system and oxidative stress in liver transplantation

    Get PDF
    A major issue in organ transplantation is the development of a protocol that can preserve organs under optimal conditions. Damage to organs is commonly a consequence of flow deprivation and oxygen starvation following the restoration of blood flow and reoxygenation. This is known as ischemia-reperfusion injury (IRI): a complex multifactorial process that causes cell damage. While the oxygen deprivation due to ischemia depletes cell energy, subsequent tissue oxygenation due to reperfusion induces many cascades, from reactive oxygen species production to apoptosis initiation. Autophagy has also been identified in the pathogenesis of IRI, although such alterations and their subsequent functional significance are controversial. Moreover, proteasome activation may be a relevant pathophysiological mechanism. Different strategies have been adopted to limit IRI damage, including the supplementation of commercial preservation media with pharmacological agents or additives. In this review, we focus on novel strategies related to the ubiquitin proteasome system and oxidative stress inhibition, which have been used to minimize damage in liver transplantation

    Losartan activates sirtuin 1 in rat reduced-size orthotopic liver transplantation

    Get PDF
    © 2015 Baishideng Publishing Group Inc. All rights reserved. Aim: To investigate a possible association between losartan and sirtuin 1 (SIRT1) in reduced-size orthotopic liver transplantation (ROLT) in rats. Methods: Livers of male Sprague-Dawley rats (200-250 g) were preserved in University of Wisconsin preservation solution for 1 h at 4°C prior to ROLT. In an additional group, an antagonist of angiotensin II type 1 receptor (AT1R), losartan, was orally administered (5 mg/kg) 24 h and 1 h before the surgical procedure to both the donors and the recipients. Transaminase (as an indicator of liver injury), SIRT1 activity, and nicotinamide adenine dinucleotide (NAD+, a co-factor necessary for SIRT1 activity) levels were determined by biochemical methods. Protein expression of SIRT1, acetylated FoxO1 (ac-FoxO1), NAMPT (the precursor of NAD+), heat shock proteins (HSP70, HO-1) expression, endoplasmic reticulum stress (GRP78, IRE1α, p-eIF2) and apoptosis (caspase 12 and caspase 3) parameters were determined by Western blot. Possible alterations in protein expression of mitogen activated protein kinases (MAPK), such as p-p38 and p-ERK, were also evaluated. Furthermore, the SIRT3 protein expression and mRNA levels were examined. Results: The present study demonstrated that losartan administration led to diminished liver injury when compared to ROLT group, as evidenced by the significant decreases in alanine aminotransferase (358.3 133.44 vs 206 33.61, P + (0.87 0.22 vs 1.195 0.144, P < 0.05) the co-factor necessary for SIRT1 activity, as well as with decreases in ac-FoxO1 expression. Losartan treatment also provoked significant attenuation of endoplasmic reticulum stress parameters (GRP78, IRE1α, p-eIF2) which was consistent with reduced levels of both caspase 12 and caspase 3. Furthermore, losartan administration stimulated HSP70 protein expression and attenuated HO-1 expression. However, no changes were observed in protein or mRNA expression of SIRT3. Finally, the protein expression pattern of p-ERK and p-p38 were not altered upon losartan administration. Conclusion: The present study reports that losartan induces SIRT1 expression and activity, and that it reduces hepatic injury in a ROLT model.Supported by Grants from Fondo de Investigaciones Sanitarias, No. FIS PI12/00519; fellowship from Agència de Gestió d’Ajuts Universitaris i de Recerca, No. 2012FI_B00382; Generalitat de Catalunya, Barcelona, Catalonia, Spain (to Pantazi E)Peer Reviewe

    Losartan activates sirtuin 1 in rat reduced-size orthotopic liver transplantation

    Get PDF
    © 2015 Baishideng Publishing Group Inc. All rights reserved. Aim: To investigate a possible association between losartan and sirtuin 1 (SIRT1) in reduced-size orthotopic liver transplantation (ROLT) in rats. Methods: Livers of male Sprague-Dawley rats (200-250 g) were preserved in University of Wisconsin preservation solution for 1 h at 4°C prior to ROLT. In an additional group, an antagonist of angiotensin II type 1 receptor (AT1R), losartan, was orally administered (5 mg/kg) 24 h and 1 h before the surgical procedure to both the donors and the recipients. Transaminase (as an indicator of liver injury), SIRT1 activity, and nicotinamide adenine dinucleotide (NAD+, a co-factor necessary for SIRT1 activity) levels were determined by biochemical methods. Protein expression of SIRT1, acetylated FoxO1 (ac-FoxO1), NAMPT (the precursor of NAD+), heat shock proteins (HSP70, HO-1) expression, endoplasmic reticulum stress (GRP78, IRE1α, p-eIF2) and apoptosis (caspase 12 and caspase 3) parameters were determined by Western blot. Possible alterations in protein expression of mitogen activated protein kinases (MAPK), such as p-p38 and p-ERK, were also evaluated. Furthermore, the SIRT3 protein expression and mRNA levels were examined. Results: The present study demonstrated that losartan administration led to diminished liver injury when compared to ROLT group, as evidenced by the significant decreases in alanine aminotransferase (358.3 133.44 vs 206 33.61, P + (0.87 0.22 vs 1.195 0.144, P < 0.05) the co-factor necessary for SIRT1 activity, as well as with decreases in ac-FoxO1 expression. Losartan treatment also provoked significant attenuation of endoplasmic reticulum stress parameters (GRP78, IRE1α, p-eIF2) which was consistent with reduced levels of both caspase 12 and caspase 3. Furthermore, losartan administration stimulated HSP70 protein expression and attenuated HO-1 expression. However, no changes were observed in protein or mRNA expression of SIRT3. Finally, the protein expression pattern of p-ERK and p-p38 were not altered upon losartan administration. Conclusion: The present study reports that losartan induces SIRT1 expression and activity, and that it reduces hepatic injury in a ROLT model.Supported by Grants from Fondo de Investigaciones Sanitarias, No. FIS PI12/00519; fellowship from Agència de Gestió d’Ajuts Universitaris i de Recerca, No. 2012FI_B00382; Generalitat de Catalunya, Barcelona, Catalonia, Spain (to Pantazi E)Peer Reviewe

    Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation

    Get PDF
    Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4°C) and after reperfusion (2 h, 37°C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI.Eirini Pantazi thanks the fellowship from AGAUR (2012FI_B00382), Generalitat de Catalunya, Barcelona, Catalonia, Spain. The authors would like to thank the Fondo de Investigaciones Sanitarias FIS PI12/00519; FIS PI15/00110 for the economic support.Peer Reviewe

    Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update

    Get PDF
    Aldehyde dehydrogenase 2 (ALDH2) is best known for its critical detoxifying role in liver alcohol metabolism. However, ALDH2 dysfunction is also involved in a wide range of human pathophysiological situations and is associated with complications such as cardiovascular diseases, diabetes mellitus, neurodegenerative diseases and aging. A growing body of research has shown that ALDH2 provides important protection against oxidative stress and the subsequent loading of toxic aldehydes such as 4-hydroxy-2-nonenal and adducts that occur in human diseases, including ischemia reperfusion injury (IRI). There is increasing evidence of its role in IRI pathophysiology in organs such as heart, brain, small intestine and kidney; however, surprisingly few studies have been carried out in the liver, where ALDH2 is found in abundance. This study reviews the role of ALDH2 in modulating the pathways involved in the pathophysiology of IRI associated with oxidative stress, autophagy and apoptosis. Special emphasis is placed on the role of ALDH2 in different organs, on therapeutic "preconditioning" strategies, and on the use of ALDH2 agonists such as Alda-1, which may become a useful therapeutic tool for preventing the deleterious effects of IRI in organ transplantation

    Role of PEG35, Mitochondrial ALDH2, and Glutathione in Cold Fatty Liver Graft Preservation: An IGL-2 Approach.

    Get PDF
    The total damage inflicted on the liver before transplantation is associated with severalsurgical manipulations, such as organ recovery, washout of the graft, cold conservation in organpreservation solutions (UW, Celsior, HTK, IGL-1), and rinsing of the organ before implantation.Polyethylene glycol 35 (PEG35) is the oncotic agent present in the IGL-1 solution, which is an alterna-tive to UW and Celsior solutions in liver clinical transplantation. In a model of cold preservation inrats (4◦C; 24 h), we evaluated the effects induced by PEG35 on detoxifying enzymes and nitric oxide,comparing IGL-1 to IGL-0 (which is the same as IGL-1 without PEG). The benefits were also assessedin a new IGL-2 solution characterized by increased concentrations of PEG35 (from 1 g/L to 5 g/L)and glutathione (from 3 mmol/L to 9 mmol/L) compared to IGL-1. We demonstrated that PEG35promoted the mitochondrial enzyme ALDH2, and in combination with glutathione, prevented theformation of toxic aldehyde adducts (measured as 4-hydroxynonenal) and oxidized proteins (AOPP).In addition, PEG35 promoted the vasodilator factor nitric oxide, which may improve the microcircu-latory disturbances in steatotic grafts during preservation and revascularization. All of these resultslead to a reduction in damage inflicted on the fatty liver graft during the cold storage preservation.In this communication, we report on the benefits of IGL-2 in hypothermic static preservation, whichhas already been proved to confer benefits in hypothermic oxygenated dynamic preservation. Hence,the data reported here reinforce the fact that IGL-2 is a suitable alternative to be used as a uniquesolution/perfusate when hypothermic static and preservation strategies are used, either separately orcombined, easing the logistics and avoiding the mixture of different solutions/perfusates, especiallywhen fatty liver grafts are used. Further research regarding new therapeutic and pharmacologicalinsights is needed to explore the underlying mitochondrial mechanisms exerted by PEG35 in staticand dynamic graft preservation strategies for clinical liver transplantation purpos
    corecore