45,415 research outputs found

    Producing place atmospheres digitally: Architecture, digital visualisations practices and the experience economy

    Get PDF
    Computer generated images have become the common means for architects and developers to visualise and market future urban developments. This article examines within the context of the experience economy how these digital images aim to evoke and manipulate specific place atmospheres to emphasize the experiential qualities of new buildings and urban environments. In particular, we argue that CGIs are far from ‘just’ glossy representations but are a new form of visualising the urban that captures and markets particular embodied sensations. Drawing on a two year qualitative study of architects’ practices that worked on the Msheireb project, a large scale redevelopment project in Doha (Qatar), we examine how digital visualisation technology enables the virtual engineering of sensory experiences using a wide range of graphic effects. We show how these CGIs are laboriously materialised in order to depict and present specific sensory, embodied regimes and affective experiences to appeal to clients and consumers. Such development has two key implications. Firstly, we demonstrate the importance of digital technologies in framing the ‘expressive infrastructure’ (Thrift 2012) of the experience economy. Secondly, we argue that although the Msheireb CGIs open up a field of negotiation between producers and the Qatari client, and work quite hard at being culturally specific, they ultimately draw “on a Westnocentric literary and sensory palette” (Tolia-Kelly 2006) that highlights the continuing influence of colonial sensibilities in supposedly postcolonial urban processes.This research was funded by the ESRC (RES-062-23-0223)

    Apparent magnitudes in an inhomogeneous universe: the global viewpoint

    Full text link
    Apparent magnitudes are important for high precision cosmology. It is generally accepted that weak gravitational lensing does not affect the relationship between apparent magnitude and redshift. By considering metric perturbations it is shown that objects observed in an inhomogeneous universe have, on average, higher apparent magnitudes than those observed at the same redshift in a homogeneous universe.Comment: 2 pages, Latex, with aastex and emulateapj

    Cotton spinning to climbing gear: practical aspects of design evolution in Lancashire and the North West of England

    Get PDF
    This article looks at the role of path dependency in the design of outdoor clothing and equipment, from the perspective of changing and overlapping industrial clusters in Lancashire and Sheffield, from the 1960s. It demonstrates that, unlike the fashion market, design in mountaineering clothing and equipment was originally based heavily upon functionality and hence on user innovation. It shows that skills and knowledge which evolved during the industrial revolution, in both industrial areas, were vitally important to the development of internationally competitive mountaineering equipment firms. It was, however, the way in which these sources of knowledge were combined with sporting expertise that contributed to the design of innovative functional products. In addition, fundamental changes occurred in the relationship between manufacturers and their customers and these were vital to the success of this process, marking a departure from past practice

    Spin Coherence and 14^{14}N ESEEM Effects of Nitrogen-Vacancy Centers in Diamond with X-band Pulsed ESR

    Full text link
    Pulsed ESR experiments are reported for ensembles of negatively-charged nitrogen-vacancy centers (NV^-) in diamonds at X-band magnetic fields (280-400 mT) and low temperatures (2-70 K). The NV^- centers in synthetic type IIb diamonds (nitrogen impurity concentration <1<1~ppm) are prepared with bulk concentrations of 210132\cdot 10^{13} cm3^{-3} to 410144\cdot 10^{14} cm3^{-3} by high-energy electron irradiation and subsequent annealing. We find that a proper post-radiation anneal (1000^\circC for 60 mins) is critically important to repair the radiation damage and to recover long electron spin coherence times for NV^-s. After the annealing, spin coherence times of T2=0.74_2 = 0.74~ms at 5~K are achieved, being only limited by 13^{13}C nuclear spectral diffusion in natural abundance diamonds. At X-band magnetic fields, strong electron spin echo envelope modulation (ESEEM) is observed originating from the central 14^{14}N nucleus. The ESEEM spectral analysis allows for accurate determination of the 14^{14}N nuclear hypefine and quadrupole tensors. In addition, the ESEEM effects from two proximal 13^{13}C sites (second-nearest neighbor and fourth-nearest neighbor) are resolved and the respective 13^{13}C hyperfine coupling constants are extracted.Comment: 10 pages, 5 figure

    Giant electrocaloric effect around Tc_c

    Full text link
    We use molecular dynamics with a first-principles-based shell model potential to study the electrocaloric effect (ECE) in lithium niobate, LiNbO3_3, and find a giant electrocaloric effect along a line passing through the ferroelectric transition. With applied electric field, a line of maximum ECE passes through the zero field ferroelectric transition, continuing along a Widom line at high temperatures with increasing field, and along the instability that leads to homogeneous ferroelectric switching below TcT_c with an applied field antiparallel to the spontaneous polarization. This line is defined as the minimum in the inverse capacitance under applied electric field. We investigate the effects of pressure, temperature and applied electric field on the ECE. The behavior we observe in LiNbO3_3 should generally apply to ferroelectrics; we therefore suggest that the operating temperature for refrigeration and energy scavenging applications should be above the ferroelectric transition region to obtain large electrocaloric response. We find a relationship among TcT_c, the Widom line and homogeneous switching that should be universal among ferroelectrics, relaxors, multiferroics, and the same behavior should be found under applied magnetic fields in ferromagnets.Comment: 5 page

    Competition of mixing and segregation in rotating cylinders

    Full text link
    Using discrete element methods, we study numerically the dynamics of the size segregation process of binary particle mixtures in three-dimensional rotating drums, operated in the continuous flow regime. Particle rotations are included and we focus on different volume filling fractions of the drum to study the interplay between the competing phenomena of mixing and segregation. It is found that segregation is best for a more than half-filled drum due to the non-zero width of the fluidized layer. For different particle size ratios, it is found that radial segregation occurs for any arbitrary small particle size difference and the final amount of segregation shows a linear dependence on the size ratio of the two particle species. To quantify the interplay between segregation and mixing, we investigate the dynamics of the center of mass positions for each particle component. Starting with initially separated particle groups we find that no mixing of the component is necessary in order to obtain a radially segregated core.Comment: 9 pages, 12 figures (EPIC/EEPIC & EPS, macros included), submitted to Physics of Fluid

    Unambiguous pure state identification without classical knowledge

    Get PDF
    We study how to unambiguously identify a given quantum pure state with one of the two reference pure states when no classical knowledge on the reference states is given but a certain number of copies of each reference quantum state are presented. By the unambiguous identification, we mean that we are not allowed to make a mistake but our measurement can produce an inconclusive result. Assuming the two reference states are independently distributed over the whole pure state space in a unitary invariant way, we determine the optimal mean success probability for an arbitrary number of copies of the reference states and a general dimension of the state space. It is explicitly shown that the obtained optimal mean success probability asymptotically approaches that of the unambiguous discrimination as the number of the copies of the reference states increases.Comment: v3: 8 pages, minor corrections, journal versio

    HST and Spitzer point source detection and optical extinction in powerful narrow-line radio galaxies

    Get PDF
    We present the analysis of infrared HST and Spitzer data for a sample of 13 FRII radio galaxies at 0.03<z<0.11 that are classified as narrow-line radio galaxies (NLRG). In the context of the unified schemes for active galactic nuclei (AGN), our direct view of the AGN in NLRG is impeded by a parsec-scale dusty torus structure. Our high resolution infrared observations provide new information about the degree of extinction induced by the torus, and the incidence of obscured AGN in NLRG. We find that the point-like nucleus detection rate increases from 25 per cent at 1.025μ\mum, to 80 per cent at 2.05μ\mum, and to 100 per cent at 8.0μ\mum. This supports the idea that most NLRG host an obscured AGN in their centre. We estimate the extinction from the obscuring structures using X-ray, near-IR and mid-IR data. We find that the optical extinction derived from the 9.7μ\mum silicate absorption feature is consistently lower than the extinction derived using other techniques. This discrepancy challenges the assumption that all the mid-infrared emission of NLRG is extinguished by a simple screen of dust at larger radii. This disagreement can be explained in terms of either weakening of the silicate absorption feature by (i) thermal mid-IR emission from the narrow-line region, (ii) non-thermal emission from the base of the radio jets, or (iii) by direct warm dust emission that leaks through a clumpy torus without suffering major attenuation.Comment: 18 pages, 7 figures, 8 tables, accepted for publication in MNRA
    corecore