9 research outputs found
Recommended from our members
Candidate glutamatergic and dopaminergic pathway gene variants do not influence Huntington’s disease motor onset
Huntington’s disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and behavioral disturbances. It is caused by the expansion of the HTT CAG repeat, which is the major determinant of age at onset (AO) of motor symptoms. Aberrant function of N-methyl-D-aspartate receptors and/or overexposure to dopamine has been suggested to cause significant neurotoxicity, contributing to HD pathogenesis. We used genetic association analysis in 1,628 HD patients to evaluate candidate polymorphisms in N-methyl-D-aspartate receptor subtype genes (GRIN2A rs4998386 and rs2650427, and GRIN2B rs1806201) and functional polymorphisms in genes in the dopamine pathway (DAT1 3′ UTR 40-bp variable number tandem repeat (VNTR), DRD4 exon 3 48-bp VNTR, DRD2 rs1800497, and COMT rs4608) as potential modifiers of the disease process. None of the seven polymorphisms tested was found to be associated with significant modification of motor AO, either in a dominant or additive model, after adjusting for ancestry. The results of this candidate-genetic study therefore do not provide strong evidence to support a modulatory role for these variations within glutamatergic and dopaminergic genes in the AO of HD motor manifestations
Association between Hypothyroidism Onset and Alzheimer Disease Onset in Adults with Down Syndrome
Adults with Down syndrome (DS) have an exceptionally high frequency of Alzheimer disease (AD) with a wide variability in onset, from 40 to 70 years of age. Equally prevalent in DS is hypothyroidism. In this study, we sought to quantify the relationship between the two. A total of 232 adults with DS and AD were stratified into three AD onset age groups: early (<47 years), typical (48–59), and late (>59). Among patients with available data, differences in the distributions of demographics, hypothyroidism variables (presence, age of onset), thyroid function tests, thyroid autoantibodies, and APOE genotypes were assessed (e.g., chi-squared, Mann–Whitney tests). Spearman and partial Spearman correlations and ordinal logistic regression models were constructed to quantify the association between ages of AD and hypothyroidism onset with and without covariate adjustments. We observed a positive association between the ages of AD and hypothyroidism onset after accounting for APOE-Ɛ4 (correlation: 0.44, 0.24, 0.60; odds ratio: 1.09, 1.05–1.14). However, an early age of hypothyroidism onset and the presence of the APOE-Ɛ4 allele were independently associated with the early age of AD onset. Similar findings were observed when accounting for other factors. Our study provides evidence for the importance of hypothyroidism and associated pathological mechanisms for risk of AD in DS
Recommended from our members
A systems-level “misunderstanding”: the plasma metabolome in Huntington’s disease
Objective: Huntington’s disease (HD) is a rare neurodegenerative disease caused by the expansion of an N-terminal repeat in the huntingtin protein. The protein is expressed in all cells in the body; hence, peripheral tissues, such as blood, may recapitulate processes in the brain. The plasma metabolome may provide a window into active processes that influence brain health and a unique opportunity to noninvasively identify processes that may contribute to neurodegeneration. Alterations in metabolic pathways in brain have been shown to profoundly impact HD. Therefore, identification and quantification of critical metabolomic perturbations could provide novel biomarkers for disease onset and disease progression. Methods: We analyzed the plasma metabolomic profiles from 52 premanifest (PHD), 102 early symptomatic HD, and 140 healthy controls (NC) using liquid chromatography coupled with a highly sensitive electrochemical detection platform. Results: Alterations in tryptophan, tyrosine, purine, and antioxidant pathways were identified, including many related to energetic and oxidative stress and derived from the gut microbiome. Multivariate statistical modeling demonstrated mutually distinct metabolomic profiles, suggesting that the processes that determine onset were likely distinct from those that determine progression. Gut microbiome-derived metabolites particularly differentiated the PHD metabolome, while the symptomatic HD metabolome was increasingly influenced by metabolites that may reflect mutant huntingtin toxicity and neurodegeneration. Interpretation Understanding the complex changes in the delicate balance of the metabolome and the gut microbiome in HD, and how they relate to disease onset, progression, and phenotypic variability in HD are critical questions for future research
Joint-label fusion brain atlases for dementia research in Down syndrome.
Research suggests a link between Alzheimer's Disease in Down Syndrome (DS) and the overproduction of amyloid plaques. Using Positron Emission Tomography (PET) we can assess the in-vivo regional amyloid load using several available ligands. To measure amyloid distributions in specific brain regions, a brain atlas is used. A popular method of creating a brain atlas is to segment a participant's structural Magnetic Resonance Imaging (MRI) scan. Acquiring an MRI is often challenging in intellectually-imparied populations because of contraindications or data exclusion due to significant motion artifacts or incomplete sequences related to general discomfort. When an MRI cannot be acquired, it is typically replaced with a standardized brain atlas derived from neurotypical populations (i.e. healthy individuals without DS) which may be inappropriate for use in DS. In this project, we create a series of disease and diagnosis-specific (cognitively stable (CS-DS), mild cognitive impairment (MCI-DS), and dementia (DEM-DS)) probabilistic group atlases of participants with DS and evaluate their accuracy of quantifying regional amyloid load compared to the individually-based MRI segmentations. Further, we compare the diagnostic-specific atlases with a probabilistic atlas constructed from similar-aged cognitively-stable neurotypical participants. We hypothesized that regional PET signals will best match the individually-based MRI segmentations by using DS group atlases that aligns with a participant's disorder and disease status (e.g. DS and MCI-DS). Our results vary by brain region but generally show that using a disorder-specific atlas in DS better matches the individually-based MRI segmentations than using an atlas constructed from cognitively-stable neurotypical participants. We found no additional benefit of using diagnose-specific atlases matching disease status. All atlases are made publicly available for the research community.HighlightDown syndrome (DS) joint-label-fusion atlases provide accurate positron emission tomography (PET) amyloid measurements.A disorder-specific DS atlas is better than a neurotypical atlas for PET quantification.It is not necessary to use a disease-state-specific atlas for quantification in aged DS.Dorsal striatum results vary, possibly due to this region and dementia progression
Safety, tolerability, and efficacy of PBT2 in Huntington's disease: A phase 2, randomised, double-blind, placebo-controlled trial
Background: PBT2 is a metal protein-attenuating compound that might reduce metal-induced aggregation of mutant huntingtin and has prolonged survival in a mouse model of Huntington's disease. We aimed to assess the safety, tolerability, and efficacy of PBT2 in patients with Huntington's disease.
Methods: In this 26-week, randomised, double-blind, placebo-controlled trial, adults ( ≥ 25 years old ) with early-stage to mid-stage Huntington's disease were randomly assigned ( 1:1:1 ) by a centralised interactive response system to once daily PBT2 250 mg, PBT2 100 mg, or placebo. Randomisation was stratified by site with a block size of three. Participants, carers, the steering committee, site investigators, study staff, and the study sponsor were masked to treatment assignment. Primary endpoints were safety and tolerability. The safety population consisted of all participants who were randomly assigned and had at least one dose of study drug. The principal secondary endpoint was cognition, measured by the change from baseline to week 26 in the main composite Z score of five cognitive tests ( Category Fluency Test, Trail Making Test Part B, Map Search, Symbol Digit Modalities Test, and Stroop Word Reading Test ) and scores on eight individual cognitive tests ( the five aforementioned plus the Trail Making Test Part A, Montreal Cognitive Assessment, and the Speeded Tapping Test ). The intention-to-treat population comprised participants who were randomly assigned and had at least one efficacy assessment after administration of study drug. This trial is registered with [http://clinicaltrials.gov/] ClinicalTrials.gov, [http://clinicaltrials.gov/show/NCT01590888] NCT01590888.
Findings: Between April 18, 2012, and Dec 14, 2012, 109 participants were randomly assigned to PBT2 250 mg ( n=36 ), PBT2 100 mg ( n=38 ), or placebo ( n=35 ) at 19 research centres in Australia and the USA. 32 ( 89% ) individuals on PBT2 250 mg, 38 ( 100% ) on PBT2 100 mg, and 34 ( 97% ) on placebo completed the study. Six serious adverse events ( acute coronary syndrome, major depression, pneumonia, suicide attempt, viral infection, and worsening of Huntington's disease ) occurred in five participants in the PBT2 250 mg group, three ( fall with subdural haematoma, suicide attempt, and hospital admission for stabilisation of Huntington's disease ) occurred in two participants in the PBT2 100 mg group, and one ( increasing aggression ) occurred in a participant in the placebo group. The site investigators deemed all, except the worsening of Huntington's disease, as unrelated to study drug. 32 ( 89% ) participants on PBT2 250 mg, 30 ( 79% ) on PBT2 100 mg, and 28 ( 80% ) on placebo had at least one adverse event. Compared with placebo, neither PBT2 100 mg ( least-squares mean 0·02, 95% CI −0·10 to 0·14; p=0·772 ) nor PBT2 250 mg ( 0·07, −0·05 to 0·20; p=0·240 ) significantly improved the main composite cognition Zscore between baseline and 26 weeks. Compared with placebo, the Trail Making Test Part B score was improved between baseline and 26 weeks in the PBT2 250 mg group ( 17·65 s, 0·65–34·65; p=0·042 ) but not in the 100 mg group ( 0·79 s improvement, −15·75 to 17·32; p=0·925 ); neither dose significantly improved cognition on the other tests.
Interpretation: PBT2 was generally safe and well tolerated in patients with Huntington's disease. The potential benefit on executive function will need to be confirmed in a larger study.
Funding: Prana Biotechnology Limited
Recommended from our members
Cerebrovascular disease is associated with Alzheimer’s plasma biomarker concentrations in adults with Down syndrome
Abstract
By age 40 years, over 90% of adults with Down syndrome have Alzheimer’s disease pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with Down syndrome have elevated cerebrovascular disease markers that track with the clinical progression of Alzheimer’s disease, suggesting a role of cerebrovascular disease that is hypothesized to be mediated by inflammatory factors. This study examined the pathways through which small vessel cerebrovascular disease contributes to Alzheimer’s disease-related pathophysiology and neurodegeneration in adults with Down syndrome. One hundred eighty-five participants from the Alzheimer’s Biomarkers Consortium–Down Syndrome [mean (SD) age = 45.2 (9.3) years] with available MRI and plasma biomarker data were included in this study. White matter hyperintensity (WMH) volumes were derived from T2-weighted fluid-attenuated inversion recovery MRI scans, and plasma biomarker concentrations of amyloid beta 42/40, phosphorylated tau 217, astrocytosis (glial fibrillary acidic protein) and neurodegeneration (neurofilament light chain) were measured with ultrasensitive immunoassays. We examined the bivariate relationships of WMH, amyloid beta 42/40, phosphorylated tau 217 and glial fibrillary acidic protein with age-residualized neurofilament light chain across Alzheimer’s disease diagnostic groups. A series of mediation and path analyses examined statistical pathways linking WMH and Alzheimer’s disease pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. There was a direct and indirect bidirectional effect through the glial fibrillary acidic protein of WMH on phosphorylated tau 217 concentration, which was associated with neurofilament light chain concentration in the entire sample. Amongst cognitively stable participants, WMH was directly and indirectly, through glial fibrillary acidic protein, associated with phosphorylated tau 217 concentration, and in those with mild cognitive impairment, there was a direct effect of WMH on phosphorylated tau 217 and neurofilament light chain concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. The findings from this cross-sectional study suggest that among individuals with Down syndrome, cerebrovascular disease promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of Alzheimer’s disease, but future studies will need to confirm these associations with longitudinal data. This work joins an emerging literature that implicates cerebrovascular disease and its interface with neuroinflammation as a core pathological feature of Alzheimer’s disease in adults with Down syndrome.</jats:p
Outcomes in Newly Diagnosed Atrial Fibrillation and History of Acute Coronary Syndromes: Insights from GARFIELD-AF
BACKGROUND: Many patients with atrial fibrillation have concomitant coronary artery disease with or without acute coronary syndromes and are in need of additional antithrombotic therapy. There are few data on the long-term clinical outcome of atrial fibrillation patients with a history of acute coronary syndrome. This is a 2-year study of atrial fibrillation patients with or without a history of acute coronary syndromes