48 research outputs found

    Mitochondrial Diabetes in Children: Seek and You Will Find It

    Get PDF
    Maternally Inherited Diabetes and Deafness (MIDD) is a rare form of diabetes due to defects in mitochondrial DNA (mtDNA). 3243 A>G is the mutation most frequently associated with this condition, but other mtDNA variants have been linked with a diabetic phenotype suggestive of MIDD. From 1989 to 2009, we clinically diagnosed mitochondrial diabetes in 11 diabetic children. Diagnosis was based on the presence of one or more of the following criteria: 1) maculopathy; 2) hearing impairment; 3) maternal heritability of diabetes/impaired fasting glucose and/or hearing impairment and/or maculopathy in three consecutive generations (or in two generations if 2 or 3 members of a family were affected). We sequenced the mtDNA in the 11 probands, in their mothers and in 80 controls. We identified 33 diabetes-suspected mutations, 1/33 was 3243A>G. Most patients (91%) and their mothers had mutations in complex I and/or IV of the respiratory chain. We measured the activity of these two enzymes and found that they were less active in mutated patients and their mothers than in the healthy control pool. The prevalence of hearing loss (36% vs 75–98%) and macular dystrophy (54% vs 86%) was lower in our mitochondrial diabetic adolescents than reported in adults. Moreover, we found a hitherto unknown association between mitochondrial diabetes and celiac disease. In conclusion, mitochondrial diabetes should be considered a complex syndrome with several phenotypic variants. Moreover, deafness is not an essential component of the disease in children. The whole mtDNA should be screened because the 3243A>G variant is not as frequent in children as in adults. In fact, 91% of our patients were mutated in the complex I and/or IV genes. The enzymatic assay may be a useful tool with which to confirm the pathogenic significance of detected variants

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Six novel mutations in the POMC and MC4R genes in severely obese adults living in Souther Italy

    No full text
    BACKGROUND: The genetic characterization of obese individuals could clarify the molecular mechanisms underlying body weight regulation and lead to targeted therapy. Here we report variants of the proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) genes detected in severely obese adults living in southern Italy. METHODS: A total of 196 unrelated nondiabetic severely obese individuals [111 females and 85 males; mean (SD) age, 32.2 (11.5) years; mean body mass index, 48.8 (8.1) kg/m(2)] and 100 normal-weight healthy volunteers (34 males and 66 females) entered the study. POMC and MC4R were genotyped by sequencing analysis. Leptin, insulin, glucose, and the lipid profile were measured in fasting serum samples. We used the protein truncation test to verify the stop-codon mutation. Anthropometric measurements, sitting blood pressure, and heart rate were also recorded. RESULTS: Of the obese participants, 1.5% had mutations in POMC exon 3 (new mutations, P231L and E244X; known, R236G) and 2.5% had MC4R mutations (new mutations, W174C, Q43X, S19fsX51, and I317V; known, A175T). These mutations were not present in the controls. Gene polymorphisms were identified in similar percentages of severely obese and nonobese individuals, i.e., respectively, 52.5% and 51% (POMC) and 1% and 2% (MC4R). CONCLUSIONS: We detected 2 new POMC mutations and 4 new MC4R mutations in a large number of severely obese adults living in southern Italy. These mutations, not present in normal-weight individuals, are further evidence that defects in the melanocortin pathway are related to severe obesity

    A multilayer perceptron neural network-based approach for the identification of responsiveness to interferon therapy in multiple sclerosis patients

    No full text
    Multiple sclerosis is an idiopathic inflammatory disease characterized by multiple focal lesions in the white matter of the central nervous system. Multiple sclerosis patients are usually treated with interferon−β, but disease activitydecreased in only 30% − 40% of patients. In the attempt to differentiate between responders and non responders, we screened the main genes involved in the interferon signaling pathway, for 38 Single Nucleotide Polymorphisms in a multiple sclerosis Caucasian population from South Italy. We then analyzed the data using a multilayer perceptron neural network based approach, in which we evaluated the global weight of a set of SNPs localized in different genes and their association with response to interferon therapy through a feature selection procedure (a combination of automatic relevance determination and backward elimination). The neural approach appears to be a useful tool in identifying gene polymorphisms involved in the response of patients to interferon therapy: two out of five genes were identified as containing 4 out of 38 significant single nucleotide polymorphisms, with a global accuracy of 70% in predicting responder and non responder patients

    Haplogroup T is an obesity risk factor: mitochondrial DNA haplotyping in a morbid obese population from southern Italy. Biomed Res Int 2013: 631082

    No full text
    Mitochondrial DNA (mtDNA) haplogroups have been associated with the expression of mitochondrial-related diseases and with metabolic alterations, but their role has not yet been investigated in morbid obese Caucasian subjects. Therefore, we investigated the association between mitochondrial haplogroups and morbid obesity in patients from southern Italy. The mtDNA D-loop of morbid obese patients ( = 500; BMI &gt; 40 kg/m 2 ) and controls ( = 216; BMI &lt; 25 kg/m 2 ) was sequenced to determine the mtDNA haplogroups. The T and J haplogroup frequencies were higher and lower, respectively, in obese subjects than in controls. Women bearing haplogroup T or J had twice or half the risk of obesity. Binomial logistic regression analysis showed that haplogroup T and systolic blood pressure are risk factors for a high degree of morbid obesity, namely, BMI &gt; 45 kg/m 2 and in fact together account for 8% of the BMI. In conclusion, our finding that haplogroup T increases the risk of obesity by about two-fold, suggests that, besides nuclear genome variations and environmental factors, the T haplogroup plays a role in morbid obesity in our study population from southern Italy
    corecore