28 research outputs found

    Towards practical quantum metrology

    Get PDF
    This thesis aims to help in bridging the gap between the ideals of theoretical quantum metrology and its practical application. We take three major approaches to achieving this aim: to investigate the effect of noise on metrological schemes, to study the role of resources and to devise ways to engineer effective probe states from experimentally feasible elements. We find that noise is detrimental to measurement precision but that this may be overcome by thinking outside of the asymptotic regime. Considering resources, whilst entanglement may provide an advantage, it is only useful in limited circumstances and even in this case a very small entangled state may perform as well as a large one. This is also true in multiparameter metrology, where we find that it is possible for the simultaneous estimation of phase and noise to be advantageous, even when the parameters are not fully compatible. We discuss strategies for multiparameter estimation in both discrete and continuous variable formalisms. In the continuous variable formalism, we go beyond the consideration of entanglement as a resource and construct a generalised resource theory for Gaussian states and operations which has particular cases in entanglement, steerability and squeezing. We provide a measure for this resource as well as a no-go theorem for its distillation. Finally, we use a genetic algorithm to devise state engineering schemes to produce highly sensitive states for quantum metrology

    Estimating phase with a random generator: strategies and resources in multiparameter quantum metrology

    Get PDF
    Quantum metrology aims to exploit quantum phenomena to overcome classical limitations in the estimation of relevant parameters. We consider a probe undergoing a phase shift φ whose generator is randomly sampled according to a distribution with unknown concentration κ, which introduces a physical source of noise. We then investigate strategies for the joint estimation of the two parameters φ and κ given a finite number N of interactions with the phase imprinting channel. We consider both single qubit and multipartite entangled probes, and identify regions of the parameters where simultaneous estimation is advantageous, resulting in up to a twofold reduction in resources. Quantum enhanced precision is achievable at moderate N, while for sufficiently large N classical strategies take over and the precision follows the standard quantum limit. We show that full-scale entanglement is not needed to reach such an enhancement, as efficient strategies using significantly fewer qubits in a scheme interpolating between the conventional sequential and parallel metrological schemes yield the same effective performance. These results may have relevant applications in optimization of sensing technologies

    Preventing and Reversing Vacuum-Induced Optical Losses in High-Finesse Tantalum (V) Oxide Mirror Coatings

    Get PDF
    We study the vacuum-induced degradation of high-finesse optical cavities with mirror coatings composed of SiO2_2-Ta2_{2}O5_{5} dielectric stacks, and present methods to protect these coatings and to recover their initial quality factor. For separate coatings with reflectivities centered at 370 nm and 422 nm, a vacuum-induced continuous increase in optical loss occurs if the surface-layer coating is made of Ta2_{2}O5_{5}, while it does not occur if it is made of SiO2_2. The incurred optical loss can be reversed by filling the vacuum chamber with oxygen at atmospheric pressure, and the recovery rate can be strongly accelerated by continuous laser illumination at 422 nm. Both the degradation and the recovery processes depend strongly on temperature. We find that a 1 nm-thick layer of SiO2_2 passivating the Ta2_{2}O5_{5} surface layer is sufficient to reduce the degradation rate by more than a factor of 10, strongly supporting surface oxygen depletion as the primary degradation mechanism.Comment: 14 pages, 7 figure

    Designing quantum experiments with a genetic algorithm

    Get PDF
    We introduce a genetic algorithm that designs quantum optics experiments for engineering quantum states with specific properties. Our algorithm is powerful and flexible, and can easily be modified to find methods of engineering states for a range of applications. Here we focus on quantum metrology. First, we consider the noise-free case, and use the algorithm to find quantum states with a large quantum Fisher information (QFI). We find methods, which only involve experimental elements that are available with current or near-future technology, for engineering quantum states with up to a 100 fold improvement over the best classical state, and a 20 fold improvement over the optimal Gaussian state. Such states are a superposition of the vacuum with a large number of photons (around 80), and can hence be seen as Schrödinger-cat-like states. We then apply the two most dominant noise sources in our setting—photon loss and imperfect heralding—and use the algorithm to find quantum states that still improve over the optimal Gaussian state with realistic levels of noise. This will open up experimental and technological work in using exotic non-Gaussian states for quantum-enhanced phase measurements. Finally, we use the Bayesian mean square error to look beyond the regime of validity of the QFI, finding quantum states with precision enhancements over the alternatives even when the experiment operates in the regime of limited data

    Practical quantum metrology in noisy environments

    Get PDF
    The problem of estimating an unknown phase Ï• using two-level probes in the presence of unital phase-covariant noise and using finite resources is investigated. We introduce a simple model in which the phase-imprinting operation on the probes is realized by a unitary transformation with a randomly sampled generator. We determine the optimal phase sensitivity in a sequential estimation protocol and derive a general (tight-fitting) lower bound. The sensitivity grows quadratically with the number of applications N of the phase-imprinting operation, then attains a maximum at some Nopt, and eventually decays to zero. We provide an estimate of Nopt in terms of accessible geometric properties of the noise and illustrate its usefulness as a guideline for optimizing the estimation protocol. The use of passive ancillas and of entangled probes in parallel to improve the phase sensitivity is also considered .We find that multiprobe entanglement may offer no practical advantage over single-probe coherence if the interrogation at the output is restricted to measuring local observables

    Noisy frequency estimation with noisy probes

    Get PDF
    We consider frequency estimation in a noisy environment with noisy probes. This builds on previous studies, most of which assume that the initial probe state is pure, while the encoding process is noisy, or that the initial probe state is mixed, while the encoding process is noiseless. Our work is more representative of reality, where noise is unavoidable in both the initial state of the probe and the estimation process itself. We prepare the probe in a GHZ diagonal state, starting from n + 1 qubits in an arbitrary uncorrelated mixed state, and subject it to parameter encoding under dephasing noise. For this scheme, we derive a simple formula for the (quantum and classical) Fisher information, and show that quantum enhancements do not depend on the initial mixedness of the qubits. That is, we show that the so-called 'Zeno' scaling is attainable when the noise present in the encoding process is time inhomogeneous. This scaling does not depend on the mixedness of the initial probe state, and it is retained even for highly mixed states that can never be entangled. We then show that the sensitivity of the probe in our protocol is invariant under permutations of qubits, and monotonic in purity of the initial state of the probe. Finally, we discuss two limiting cases, where purity is either distributed evenly among the probes or concentrated in a single probe

    Regulation of LRRK2 Expression Points to a Functional Role in Human Monocyte Maturation

    Get PDF
    Genetic variants of Leucine-Rich Repeat Kinase 2 (LRRK2) are associated with a significantly enhanced risk for Parkinson disease, the second most common human neurodegenerative disorder. Despite major efforts, our understanding of LRRK2 biological function and regulation remains rudimentary. In the present study we analyze LRRK2 mRNA and protein expression in sub-populations of human peripheral blood mononuclear cells (PBMCs). LRRK2 mRNA and protein was found in circulating CD19+ B cells and in CD14+ monocytes, whereas CD4+ and CD8+ T cells were devoid of LRRK2 mRNA. Within CD14+ cells the CD14+CD16+ sub-population of monocytes exhibited high levels of LRRK2 protein, in contrast to CD14+CD16- cells. However both populations expressed LRRK2 mRNA. As CD14+CD16+ cells represent a more mature subset of monocytes, we monitored LRRK2 expression after in vitro treatment with various stress factors known to induce monocyte activation. We found that IFN-γ in particular robustly increased LRRK2 mRNA and protein levels in monocytes concomitant with a shift of CD14+CD16− cells towards CD14+CD16+cells. Interestingly, the recently described LRRK2 inhibitor IN-1 attenuated this shift towards CD14+CD16+ after IFN-γ stimulation. Based on these findings we speculate that LRRK2 might have a role in monocyte maturation. Our results provide further evidence for the emerging role of LRRK2 in immune cells and regulation at the transcriptional and translational level. Our data might also reflect an involvement of peripheral and brain immune cells in the disease course of PD, in line with increasing awareness of the role of the immune system in PD

    Many Labs 5:Testing pre-data collection peer review as an intervention to increase replicability

    Get PDF
    Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3?9; median total sample = 1,279.5, range = 276?3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (?r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00?.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19?.50)
    corecore