208 research outputs found

    Stationary substrates facilitate bioinvasion in Paranaguá Bay in southern Brazil

    Get PDF
    Artificial substrates in and near ports and marinas commonly have many non-indigenous species and are the first stepping stone for the establishment of bioinvasors. Substrate movement influences fouling communities and so understanding of how species assemblages are related to specific substrate conditions is crucial as a management tool. Here we describe the species assemblage of the community after six months of development on granite plates in Paranaguá Bay. Species richness was similar in the two treatments, with 12 species on floating (constant depth) plates and 15 on stationary (variable depth) plates. However, species composition differed, with the community on floating plates being dominated by the native bivalve Mytella charruana (66.1 ± 5.5% cover) and that on stationary plates dominated by the barnacles Fistulobalanus citerosum (49.8 ± 3.5% cover) and the introduced Amphibalanus reticulatus (33.9 ± 3.7% cover). Other introduced species were Garveia franciscana, on one stationary plate, and Megabalanus coccopoma also on one stationary plate and not very abundant on half of the floating plates (< 2%). Thus, stationary plates were more susceptible to introduced species that may become very abundant, suggesting that this type of substrate should be a priority in management for bioinvasion control. We also hypothesize that the native bivalve M. charruana is the dominant competitor for space on floating substrates, thereby reducing the invasiveness of that type of substrate.Substratos artificiais em regiões de portos e marinas geralmente abrigam muitas espécies introduzidas e sua colonização constitui o primeiro passo no estabelecimento de bioinvasores. O grau de movimentação do substrato influencia a comunidade incrustante e o conhecimento da assembléia de espécies associada a cada situação é crucial como ferramenta de manejo. Neste trabalho, reportamos a estrutura de comunidades de seis meses desenvolvidas em substratos de granito na baía de Paranaguá. Foram encontradas 12 espécies na condição flutuante (profundidade constante) e 15 na condição fixa (profundidade variável), mas o número médio de espécies por placa não foi diferente nos tratamentos. A comunidade das placas flutuantes foi dominada pelo bivalve nativo Mytella charruana (66.1 ± 5.5% de cobertura), enquanto as placas fixas foram dominadas pelos cirripédios Fistulobalanus citerosum (49.8 ± 3.5%) e Amphibalanus reticulatus (33.9 ± 3.7%), este último introduzido na região. Outras espécies introduzidas encontradas foram Garveia franciscana, em apenas uma placa fixa, e Megabalanus coccopoma também em uma placa fixa e em metade das placas flutuantes, mas sempre com baixa cobertura (< 2%). Em conclusão, placas fixas foram mais suscetíveis às espécies introduzidas, uma delas ocorrendo em alta abundância, o que sugere que este tipo de substrato deveria ser priorizado em ações de controle e manejo de bioinvasão. Também hipotetizamos que o bivalve nativo M. charruana é o competidor dominante por espaço na condição flutuante, reduzindo a susceptibilidade deste substrato à bioinvasão

    Marine aquaculture as a source of propagules of invasive fouling species

    Get PDF
    Non-indigenous species tend to colonize aquaculture installations, especially when they are near international ports. In addition to the local environmental hazard that colonizing non-indigenous species pose, they can also take advantage of local transport opportunities to spread elsewhere. In this study, we examined the risk of the spread of eight invasive fouling species that are found in mussel farms in southern Brazil. We used ensemble niche models based on worldwide occurrences of these species, and environmental variables (ocean temperature and salinity) to predict suitable areas for each species with three algorithms (Maxent, Random Forest, and Support Vector Machine). As a proxy for propagule pressure, we used the tonnage transported by container ships from Santa Catarina (the main mariculture region) that travel to other Brazilian ports. We found that ports in the tropical states of Pernambuco, Ceará, and Bahia received the largest tonnage, although far from Santa Catarina and in a different ecoregion. The ascidians Aplidium accarense and Didemnum perlucidum are known from Bahia, with a high risk of invasion in the other states. The bryozoan Watersipora subtorquata also has a high risk of establishment in Pernambuco, while the ascidian Botrylloides giganteus has a medium risk in Bahia. Paraná, a state in the same ecoregion as Santa Catarina is likely to be invaded by all species. A second state in this region, Rio Grande do Sul, is vulnerable to A. accarense, the barnacle Megabalanus coccopoma, and the mussel Mytilus galloprovincialis. Climate change is changing species latitudinal distributions and most species will gain rather than lose area in near future (by 2050). As an ideal habitat for fouling organisms and invasive species, aquaculture farms can increase propagule pressure and thus the probability that species will expand their distributions, especially if they are close to ports. Therefore, an integrated approach of the risks of both aquaculture and nautical transport equipment present in a region is necessary to better inform decision-making procedures aiming at the expansion or establishment of new aquaculture farms. The risk maps provided will allow authorities and regional stakeholders to prioritize areas of concern for mitigating the present and future spread of fouling species

    Ascidian fauna (Tunicata, Ascidiacea) of subantarctic and temperate regions of Chile

    Get PDF
    30 páginas, 15 figuras, 2 tablasWe studied the ascidian fauna from two zones located in subantarctic (Punta Arenas, latitude 53º) and temperate Chile (Coquimbo, latitude 29º). The different oceanographic features of the two zones, with influence of the Humboldt Current in the north and the Cape Horn Current System and freshwater inputs in the south, led to markedly different ascidian faunas. A total of 22 species were recorded, with no shared species across the two areas (11 species each). The new species Polyzoa iosune is described, Lissoclinum perforatum is found for the first time in the Pacific Ocean, and Synoicum georgianum and Polyzoa minor are new to the Chilean fauna. The populations of Ciona in the Coquimbo area (formerly attributed to Ciona intestinalis) correspond to the species Ciona robusta. A total of 35 Cytochrome oxidase (COI) sequences of the standard barcode region have been obtained for 17 of the 22 species reported.This research was funded by CONICYT Chile (Grant 80122006). Additional funding was obtained by XT from the Spanish Government (project CHALLENGEN CTM2013-48163) and by JIC from University of Magallanes: UMAG/DI&P Grant PR-F2-01CRN-12, CIMAR 18 & CIMAR 20 Fjords Chilean Navy, and GAIA-Antarctic Project (MINEDUC-UMAG). RMR received a research grant from CNPq–National Counsel of Technological and Scientific Development (304768/2010-3).Peer reviewe

    Too cold for invasions? Contrasting patterns of native and introduced ascidians in subantarctic and temperate Chile

    Get PDF
    10 páginas, 1 tabla, 2 figuras.We analysed the biodiversity of ascidians in two areas located in southern and northern Chile: Punta Arenas in the Strait of Magellan (53º latitude, subantarctic) and Coquimbo (29º latitude, temperate). The oceanographic features of the two zones are markedly different, with influence of the Humboldt Current in the north, and the Cape Horn Current System, together with freshwater influxes, in the Magellanic zone. Both regions were surveyed twice during 2013 by SCUBA diving and pulling ropes and aquaculture cages. Both artificial structures and natural communities were sampled. A total of 22 species were identified, three of them reported for the first time in Chilean waters: Lissoclinum perforatum, Synoicum georgianum, and Polyzoa minor. The first is an introduced species found here for the first time in the Pacific. No species occurred in both regions, highlighting the very different environmental conditions of subantarctic vs. temperate waters. In spite of exhaustive searches in aquaculture facilities and on artificial structures such as harbour docks and piers, no introduced species were found in the Punta Arenas area. Conversely, 5 out of 11 (45%) species found in northern Chile were introduced. The Coquimbo area has a history of ship traffic dating back at least 150 years, and cultures of native (e.g. scallop) as well as exotic species (e.g. abalone) have been deployed for ca. 35 years. Some of the introduced species, such as Ciona robusta (formerly C. intestinalis sp. A), constitute pests for scallop culture facilities in the area, causing serious losses to local farmers. It is surprising that the Punta Arenas zone, with a history of ship traffic dating back ca. 500 years and over 25 years of sustained mussel and salmon aquaculture activity, is apparently free from introduced species. The ascidian cover on artificial structures is high, but it is made up of native species such as Paramolgula sp., Cnemidocarpa verrucosa, or Polyzoa opuntia. It is hypothesized that cold waters (5 to 11ºC) are the determining factor hindering the development of introduced ascidians, which tend to be temperate-warm water species. The ongoing warming in the Southern Cone may change this picture and continued monitoring is strongly advised.This research was funded by CONICYT Chile (Grant 80122006). Additional funding was obtained by XT from the Spanish Government (project CHALLENGEN CTM2013-48163) and by JIC from University of Magallanes - UMAG/DI&P Grant PR-F2-01CRN- 12, CIMAR 18 & CIMAR 20 Fjords Chilean Navy, and GAIAAntarctic Project (MINEDUC-UMAG). RMR received a research grant from CNPq–National Counsel of Technological and Scientific Development (304768/2010-3).Peer reviewe

    Abundance and diversity of ascidians in the southern Gulf of Chiriquí, Pacific Panama

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Aquatic Invasions 6 (2011): 381-390, doi:10.3391/ai.2011.6.4.03.Little is known about the ascidian fauna of Pacific Panama. Ascidian surveys were conducted in the southern Gulf of Chiriquí on the Pacific coast of Panama in January 2008 and 2009. Surveys along linear transects at 2-3 m depth (snorkel, 2008) and 5 and 12 m depth (SCUBA, 2009) were conducted at multiple sites within a chain of islands extending out from the mainland. Twelve different ascidian taxa were observed with mean densities of up to ~17 ascidians m-2. The most abundant species was Rhopalaea birkelandi. Two of the most abundant taxa (Ascidia sp., Pyura sp.) appear to represent previously undescribed species. Several species of didemnids were also abundant. Ascidians were most abundant near the coast of the mainland and were less abundant near the islands farthest offshore. These data on Panamanian ascidian communities provide a baseline of local biodiversity against which it will be possible to determine whether the communities change over time, if additional species become introduced to the region, or if native Panamanian species become invasive in other parts of the world.This research was supported by Ocean Life Institute Exploratory Grant (250513.38) to Carman and Sievert, Tropical Research Initiative Grant (253750.09) to Carman, Molyneaux and Sievert, a University of Hartford International Center Faculty Grant to Bullard, and CNPq senior postdoctoral grant to Rocha (200914/2008-1)

    Substrate type as a selective tool against colonization by non-native sessile invertebrates

    Get PDF
    Substratos de diferentes materiais, cores, texturas e orientação podem influenciar seletivamente no recrutamento de invertebrados sésseis e, assim, influenciar a comunidade resultante. Deste modo, o substrato pode funcionar como barreira contra o estabelecimento de espécies não nativas (NIS, na sigla em inglês). No sul do Brasil, o granito é a principal rocha formadora de costões rochosos naturais disponíveis para organismos incrustantes. Nesta investigação, nós testamos se o granito seleciona o recrutamento de espécies e se poderia, assim, impedir a colonização de espécies introduzidas ou criptogênicas já estabelecidas em substratos artificiais na região. Placas não polidas de granito e de polietileno foram submersas a cada mês em um píer de um iate clube na Baía de Paranaguá. Há uma comunidade já estabelecida sobre colunas de concreto e sobre flutuadores de fibra de vidro presentes no iate clube. Depois de um, dois e doze meses, as espécies presentes nas placas de diferentes materiais foram comparadas entre si e também com outros substratos. O granito foi colonizado por todas as sete espécies introduzidas encontradas na região, e por 18 das 26 espécies criptogênicas, sendo então ineficaz como barreira contra a colonização de NIS.Different substrates of varying composition, color, texture and orientation may selectively influence recruitment of sessile invertebrates and thereby influence the resultant community. Thus substrates may act as a barrier to the establishment of non-indigenous species (NIS). In southern Brazil, granite is the main rock forming natural rocky walls that are available for encrusting organisms. In this study we tested whether granite selectively influences recruitment and impedes colonization by introduced and cryptogenic species that are already established on artificial substrates within the region. Plates of rough cut granite and of polyethylene were made available each month under a pier at a yacht club in Paranaguá Bay. A community is already established on concrete columns and fiber glass floats on the piers. After one, two and twelve months, the faunal composition of the plates was compared between the two treatments and other artificial substrates. Granite was recruited by all the seven introduced species found in the Bay and by 18 of 26 cryptogenic species and therefore is ineffective as a barrier to NIS colonization

    CD28 Family and Chronic Rejection: “To Belatacept...and Beyond!”

    Get PDF
    Kidneys are one of the most frequently transplanted human organs. Immunosuppressive agents may prevent or reverse most acute rejection episodes; however, the graft may still succumb to chronic rejection. The immunological response involved in the chronic rejection process depends on both innate and adaptive immune response. T lymphocytes have a pivotal role in chronic rejection in adaptive immune response. Meanwhile, we aim to present a general overview on the state-of-the-art knowledge of the strategies used for manipulating the lymphocyte activation mechanisms involved in allografts, with emphasis on T-lymphocyte costimulatory and coinhibitory molecules of the B7-CD28 superfamily. A deeper understanding of the structure and function of these molecules improves both the knowledge of the immune system itself and their potential action as rejection inducers or tolerance promoters. In this context, the central role played by CD28 family, especially the relationship between CD28 and CTLA-4, becomes an interesting target for the development of immune-based therapies aiming to increase the survival rate of allografts and to decrease autoimmune phenomena. Good results obtained by the recent development of abatacept and belatacept with potential clinical use aroused better expectations concerning the outcome of transplanted patients

    Ascidians at the Pacific and Atlantic entrances to the Panama Canal

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Aquatic Invasions 6 (2011): 371-380, doi:10.3391/ai.2011.6.4.02.The Panama Canal region is susceptible to non-native species introductions due to the heavy international shipping traffic through the area. Ascidian introductions are occurring worldwide but little is known about introductions at the Panama Canal. Surveys were conducted in 2002, 2008, and 2009 within the Pacific and Atlantic entrances to the canal. We found a high diversity of ascidians on both sides of the canal, dominated by non-native species; six species occurred at both Pacific and Atlantic Panama sites. This is the first report of Polyandrocarpa anguinea and P. sagamiensis in Atlantic Panama waters and Ascidia incrassata, Ascidia sydneiensis, Botrylloides nigrum, Botryllus planus, Didemnum perlucidum, Diplosoma listerianum, Microcosmus exasperatus, Polyandrocarpa zorritensis, Polyclinum constellatum, Symplegma brakenhielmi, Symplegma rubra, and Trididemnum orbiculatum in Pacific Panama waters. The canal may serve as a major invasion corridor for ascidians and should be monitored over time.Funding for this project came from WHOI Ocean Life Institute-Tropical Research Initiative to Carman and CNPq to Rocha

    Non-native coral species dominate the fouling community on a semi-submersible platform in the southern Caribbean

    Get PDF
    A coral community was examined on a semi-submersible platform that was moored at the leeward side of Curaçao, in the southern Caribbean, from August 2016 until August 2017. This community included several non-native or cryptogenic species. Among them were two scleractinian corals (Tubastraea coccinea and T. tagusensis) and two octocorals (Chromonephthea sp. and an unidentified Nephtheidae sp.). This is the first reported presence of T. tagusensis in the southern Caribbean, and the genus Chromonephthea in the Caribbean region. An ascidian, Perophora cf. regina, is also reported from the southern Caribbean for the first time, as well as a coral-associated vermetid gastropod, Petaloconchus sp., first recorded in the Caribbean in 2014. Lack of biofouling management could potentially harm indigenous marine fauna through the introduction of non-native species. Therefore monitoring communities associated with semi-submersible platforms is essential to track the presence and dispersal of non-native, potentially invasive species

    Antibacterial modified diketopiperazines from two ascidians of the genus Didemnum

    Get PDF
    The chemical investigation of the crude extract of an ascidian of the genus Didemnumled to the isolation of the modified diketopiperazine rodriguesines A (1) and (2) as a mixture of homologues, which could be identified by analysis of spectroscopic data including MS/MS experiments. The investigation of a second Didemnumsp. led to the isolation of N-acetyl-rodriguesine A (3) and N-acetyl-rodriguesine B (4). The absolute configuration of compounds 1and 2could be established by hydrolysis and Marfey's analysis and comparison with literature data reported for compound 3, previously obtained as a synthetic product. The mixture of 1and 2displayed moderate antibiotic activity against a clinical isolate of Streptococcus mutansand against S. mutansUA159 and Staphylococcus aureusATCC6538.A investigação química do extrato bruto de uma ascidia do gênero Didemnumlevou ao isolamento das dicetopiperazinas modificadas rodriguesinas A (1) e B (2) na forma de uma mistura de homólogos, os quais puderam ser identificados pela análise de seus dados espectroscópicos inclusive experimentos MS/MS. A investigação de uma segunda ascídia do gênero Didemnumforneceu a N-acetil-rodriguesina A (3) e a N-acetil-rodriguesina B (4). A configuração absoluta dos compostos 1e 2pode ser estabelecida por hidrólise e análise de Marfey e por comparação com dados da literatura do composto 3,previamente obtido como produto de síntese. A mistura de 1e 2apresentou atividade antibiótica moderada contra um isolado clínico de Streptococcus mutans, contra S. mutans UA159 e S. aureusATCC6538.American Society of PharmacognosyFAPESP - BIOprospecTACoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)FulbrightCNPqFAPES
    corecore