32 research outputs found

    Carbon footprint from helitankers: sustainable decision making in aerial wildfire fighting

    Get PDF
    Carbon footprint (CF) can be a key factor stimulating innovation while driving sustainable decision making. The air transport sector and wildfires are considered to be relevant contributors to greenhouse gas emissions. Among the available resources for wildfire suppression, aerial firefighting ? particularly using helitankers ? is the most effective method. However the high economic costs and fuel-related emissions incurred by helitankers prevent their widespread use. This work aims to calculate the CF from helitankers in order to assess this new indicator for sustainable decision making. The CF is calculated here by a compound method based on the financial accounts of a Spanish company that owns 20 helitankers. The total cumulative corporate CF in 2012 was 5497 t CO2 equivalents. We discuss the influence of the method, its implications and future actions for the reduction of greenhouse gas emissions. Our experience should be considered as a pilot study providing further evidence of the value of using sustainable indicators in decision making

    Aplicación de metodologías participativas en los planes de prevención de incendios

    Get PDF
    Se denuncia el exceso de estudios sobre el riesgo de incendios y la escasez de estudios motodológicos sobre la ejecución de un proyecto de incendios y la exigencia de tener en cuenta a las comunidades afectadas

    Association between HLA-C alleles and COVID-19 severity in a pilot study with a Spanish Mediterranean Caucasian cohort

    Get PDF
    The clinical presentations of COVID-19 may range from an asymptomatic or mild infection to a critical or fatal disease. Several host factors such as elderly age, male gender, and previous comorbidities seem to be involved in the most severe outcomes, but also an impaired immune response that causes a hyperinflammatory state but is unable to clear the infection. In order to get further understanding about this impaired immune response, we aimed to determine the association of specific HLA alleles with different clinical presentations of COVID-19. Therefore, we analyzed HLA Class I and II, as well as KIR gene sequences, in 72 individuals with Spanish Mediterranean Caucasian ethnicity who presented mild, severe, or critical COVID-19, according to their clinical characteristics and management. This cohort was recruited in Madrid (Spain) during the first and second pandemic waves between April and October 2020. There were no significant differences in HLA-A or HLA-B alleles among groups. However, despite the small sample size, we found that HLA-C alleles from group C1 HLA-C*08:02, -C*12:03, or -C*16:01 were more frequently associated in individuals with mild COVID-19 (43.8%) than in individuals with severe (8.3%; p = 0.0030; pc = 0.033) and critical (16.1%; p = 0.0014; pc = 0.0154) disease. C1 alleles are supposed to be highly efficient to present peptides to T cells, and HLA-C*12:03 may present a high number of verified epitopes from abundant SARS-CoV-2 proteins M, N, and S, thereby being allegedly able to trigger an efficient antiviral response. On the contrary, C2 alleles are usually poorly expressed on the cell surface due to low association with β2-microglobulin (β2M) and peptides, which may impede the adequate formation of stable HLA-C/β2M/peptide heterotrimers. Consequently, this pilot study described significant differences in the presence of specific HLA-C1 alleles in individuals with different clinical presentations of COVID-19, thereby suggesting that HLA haplotyping could be valuable to get further understanding in the underlying mechanisms of the impaired immune response during critical COVID-19.This work was supported by the Coordinated Research Activities at the Centro Nacional de Microbiologı´a (CNM, Instituto de Salud Carlos III) (COV20_00679) to promote an integrated response against SARS-CoV-2 in Spain (Spanish Ministry of Science and Innovation) that is coordinated by Dr Inmaculada Casas (WHO National Influenza Center of the CNM); donation provided by Chiesi España, S.A.U. (Barcelona, Spain); the Spanish Ministry of Science and Innovation (PID2019-110275RB-I00); and grant MPY509/19 provided by Instituto de Salud Carlos III. The work of MRLH and SRM is financed by NIH grant R01AI143567. The work of LV is supported by a pre-doctoral contract from Instituto de Salud Carlos III (FIS PI16CIII/00034-ISCIII-FEDER). The work of MT is supported by Instituto de Salud Carlos III (COV20_00679). AJMG is the recipient of a post-doctoral contract“Miguel Servet” supported by the Instituto de Salud Carlos III.S

    Impaired Cytotoxic Response in PBMCs From Patients With COVID-19 Admitted to the ICU: Biomarkers to Predict Disease Severity

    Get PDF
    Infection by novel coronavirus SARS-CoV-2 causes different presentations of COVID-19 and some patients may progress to a critical, fatal form of the disease that requires their admission to ICU and invasive mechanical ventilation. In order to predict in advance which patients could be more susceptible to develop a critical form of COVID-19, it is essential to define the most adequate biomarkers. In this study, we analyzed several parameters related to the cellular immune response in blood samples from 109 patients with different presentations of COVID-19 who were recruited in Hospitals and Primary Healthcare Centers in Madrid, Spain, during the first pandemic peak between April and June 2020. Hospitalized patients with the most severe forms of COVID-19 showed a potent inflammatory response that was not translated into an efficient immune response. Despite the high levels of effector cytotoxic cell populations such as NK, NKT and CD8+ T cells, they displayed immune exhaustion markers and poor cytotoxic functionality against target cells infected with pseudotyped SARS-CoV-2 or cells lacking MHC class I molecules. Moreover, patients with critical COVID-19 showed low levels of the highly cytotoxic TCRγδ+ CD8+ T cell subpopulation. Conversely, CD4 count was greatly reduced in association to high levels of Tregs, low plasma IL-2 and impaired Th1 differentiation. The relative importance of these immunological parameters to predict COVID-19 severity was analyzed by Random Forest algorithm and we concluded that the most important features were related to an efficient cytotoxic response. Therefore, efforts to fight against SARS-CoV-2 infection should be focused not only to decrease the disproportionate inflammatory response, but also to elicit an efficient cytotoxic response against the infected cells and to reduce viral replication.This work was supported by the Coordinated Research Activities at the Centro Nacional de Microbiología (CNM, Instituto de Salud Carlos III) (COV20_00679) to promote an integrated response against SARS-CoV-2 in Spain (Spanish Ministry of Science and Innovation) that is coordinated by Dr. Inmaculada Casas (WHO National Influenza Center of the CNM); a generous donation provided by Chiesi España, S.A.U. (Barcelona, Spain); the Spanish Ministry of Economy and Competitiveness (PID2019-110275RB-I00); the Spanish AIDS Research Network RD16CIII/0002/0001 that is included in Acciόn Estratégica en Salud, Plan Nacional de Investigaciόn Científica, Desarrollo e Innovaciόn Tecnolόgica 2016-2020, Instituto de Salud Carlos III, European Region Development Fund (ERDF). The work of ML-H and SR-M is financed by NIH grant R01AI143567. The work of LH is supported by a pre-doctoral grant from Instituto de Salud Carlos III (FIS PI16CIII/00034-ISCIII-FEDER).S

    Impaired Antibody-Dependent Cellular Cytotoxicity in a Spanish Cohort of Patients With COVID-19 Admitted to the ICU

    Get PDF
    SARS-CoV-2 infection causes COVID-19, ranging from mild to critical disease in symptomatic subjects. It is essential to better understand the immunologic responses occurring in patients with the most severe outcomes. In this study, parameters related to the humoral immune response elicited against SARS-CoV-2 were analysed in 61 patients with different presentations of COVID-19 who were recruited in Hospitals and Primary Healthcare Centres in Madrid, Spain, during the first pandemic peak between April and June 2020. Subjects were allocated as mild patients without hospitalization, severe patients hospitalized or critical patients requiring ICU assistance. Critical patients showed significantly enhanced levels of B cells with memory and plasmablast phenotypes, as well as higher levels of antibodies against SARS-CoV-2 with neutralization ability, which were particularly increased in male gender. Despite all this, antibody-dependent cell-mediated cytotoxicity was defective in these individuals. Besides, patients with critical COVID-19 also showed increased IgG levels against herpesvirus such as CMV, EBV, HSV-1 and VZV, as well as detectable CMV and EBV viremia in plasma. Altogether, these results suggest an enhanced but ineffectual immune response in patients with critical COVID-19 that allowed latent herpesvirus reactivation. These findings should be considered during the clinical management of these patients due to the potential contribution to the most severe disease during SARS-CoV-2 infection.This work was supported by the Coordinated Research Activities at the Centro Nacional de Microbiología (CNM, Instituto de Salud Carlos III) (COV20_00679) to promote an integrated response against SARS-CoV-2 in Spain (Spanish Ministry of Science and Innovation) that is coordinated by Dr Inmaculada Casas (WHO National Influenza Center of the CNM) and a generous donation provided by Chiesi España, S.A.U. (Barcelona, Spain). The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication. This work was also supported by the Spanish Ministry of Economy and Competitiveness (PID2019 110275RB-I00); the Spanish AIDS Research Network RD16CIII/0002/0001 that is included in Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2016-2020, Instituto de Salud Carlos III, European Region Development Fund (ERDF); Miguel Servet - AESI, MPY 341/21. The work of ML-H and SR is financed by NIH grant R01AI143567. The work of MT is supported by Instituto de Salud Carlos III (COV20_00679). The work of LV is supported by a predoctoral grant from Instituto de Salud Carlos III (FIS PI16CIII/00034-ISCIII-FEDER).S

    Cytotoxic cell populations developed during treatment with tyrosine kinase inhibitors protect autologous CD4+ T cells from HIV-1 infection

    Get PDF
    Factor de impacto: 5,858 Q1Tyrosine kinase inhibitors (TKIs) are successfully used in clinic to treat chronic myeloid leukemia (CML). Our group previously described that CD4+ T cells from patients with CML on treatment with TKIs such as dasatinib were resistant to HIV-1 infection ex vivo. The main mechanism for this antiviral activity was primarily based on the inhibition of SAMHD1 phosphorylation, which preserves the activity against HIV-1 of this innate immune factor. Approximately 50% CML patients who achieved a deep molecular response (DMR) may safely withdraw TKI treatment without molecular recurrence. Therefore, it has been speculated that TKIs may induce a potent antileukemic response that is maintained in most patients even one year after treatment interruption (TI). Subsequent to in vitro T-cell activation, we observed that SAMHD1 was phosphorylated in CD4+ T cells from CML patients who withdrew TKI treatment more than one year earlier, which indicated that these cells were now susceptible to HIV-1 infection. Importantly, these patients were seronegative for HIV-1 and seropositive for cytomegalovirus (CMV), but without CMV viremia. Although activated CD4+ T cells from CML patients on TI were apparently permissive to HIV-1 infection ex vivo, the frequency of proviral integration was reduced more than 12-fold on average when these cells were infected ex vivo in comparison with cells isolated from untreated, healthy donors. This reduced susceptibility to infection could be related to an enhanced NK-dependent cytotoxic activity, which was increased 8-fold on average when CD4+ T cells were infected ex vivo with HIV-1 in the presence of autologous NK cells. Enhanced cytotoxic activity was also observed in CD8 + T cells from these patients, which showed 8-fold increased expression of TCRγδ and more than 18-fold increased production of IFNγ upon activation with CMV peptides. In conclusion, treatment with TKIs induced a potent antileukemic response that may also have antiviral effects against HIV-1 and CMV, suggesting that transient use of TKIs in HIV-infected patients could develop a sustained antiviral response that would potentially interfere with HIV-1 reservoir dynamics.This work was supported by NIH grant R01AI143567; the Spanish Ministry of Economy and Competitiveness (SAF2016-78480-R); the Spanish AIDS Research Network RD16CIII/0002/0001 that is included in Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2016-2020, Instituto de Salud Carlos III, European Region Development Fund (ERDF). The work of María Rosa López-Huertas and Sara Rodríguez-Mora is financed by NIH grant R01AI143567. The work of Lorena Vigón is supported by a pre-doctoral grant from Instituto de Salud Carlos III (FIS PI16CIII/00034-ISCIII-FEDER). The work of Elena Mateos is supported by the Spanish Ministry of Economy and Competitiveness SAF2016-78480-R.S

    Persistent Overactive Cytotoxic Immune Response in a Spanish Cohort of Individuals With Long-COVID: Identification of Diagnostic Biomarkers

    Get PDF
    Long-COVID is a new emerging syndrome worldwide that is characterized by the persistence of unresolved signs and symptoms of COVID-19 more than 4 weeks after the infection and even after more than 12 weeks. The underlying mechanisms for Long-COVID are still undefined, but a sustained inflammatory response caused by the persistence of SARS-CoV-2 in organ and tissue sanctuaries or resemblance with an autoimmune disease are within the most considered hypotheses. In this study, we analyzed the usefulness of several demographic, clinical, and immunological parameters as diagnostic biomarkers of Long-COVID in one cohort of Spanish individuals who presented signs and symptoms of this syndrome after 49 weeks post-infection, in comparison with individuals who recovered completely in the first 12 weeks after the infection. We determined that individuals with Long-COVID showed significantly increased levels of functional memory cells with high antiviral cytotoxic activity such as CD8+ TEMRA cells, CD8±TCRγδ+ cells, and NK cells with CD56+CD57+NKG2C+ phenotype. The persistence of these long-lasting cytotoxic populations was supported by enhanced levels of CD4+ Tregs and the expression of the exhaustion marker PD-1 on the surface of CD3+ T lymphocytes. With the use of these immune parameters and significant clinical features such as lethargy, pleuritic chest pain, and dermatological injuries, as well as demographic factors such as female gender and O+ blood type, a Random Forest algorithm predicted the assignment of the participants in the Long-COVID group with 100% accuracy. The definition of the most accurate diagnostic biomarkers could be helpful to detect the development of Long-COVID and to improve the clinical management of these patients.This work was supported by the Coordinated Research Activities at the National Center of Microbiology (CNM, Instituto de Salud Carlos III) (COV20_00679) to promote an integrated response against SARS-CoV-2 in Spain (Spanish Ministry of Science and Innovation), which is coordinated by Dr Inmaculada Casas (WHO National Influenza Center of the CNM); a generous donation provided by Chiesi España, S.A.U. (Barcelona, Spain); the Spanish Ministry of Science and Innovation (PID2019-110275RB-I00); and the Spanish AIDS Research Network RD16CIII/0002/0001 that is included in Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2016-2020, Instituto de Salud Carlos III, European Region Development Fund (ERDF). The work of ML-H and SR-M is financed by NIH grant R01AI143567. The work of MT is supported by Instituto de Salud Carlos III (COV20_00679). The work of LV is supported by a pre-doctoral grant from Instituto de Salud Carlos III (FIS PI16CIII/00034-ISCIII-FEDER). The work of FR-M is financed by the Spanish Ministry of Science and Innovation (PID2019-110275RB-I00).S

    Provirus reactivation is impaired in HIV-1 infected individuals on treatment with dasatinib and antiretroviral therapy

    Get PDF
    The latent viral reservoir formed by HIV-1, mainly in CD4 + T cells, is responsible for the failure of antiretroviral therapy (ART) to achieve a complete elimination of the virus in infected individuals. We previously determined that CD4 + T cells from individuals with chronic myeloid leukemia (CML) on treatment with dasatinib are resistant to HIV-1 infection ex vivo. The main mechanism for this antiviral effect is the preservation of SAMHD1 activity. In this study, we aimed to evaluate the impact of dasatinib on the viral reservoir of HIV-infected individuals with CML who were on simultaneous treatment with ART and dasatinib. Due to the low estimated incidence of HIV-1 infection and CML (1:65,000), three male individuals were recruited in Spain and Germany. These individuals had been on treatment with standard ART and dasatinib for median 1.3 years (IQR 1.3-5.3 years). Reservoir size and composition in PBMCs from these individuals was analyzed in comparison with HIV-infected individuals on triple ART regimen and undetectable viremia. The frequency of latently infected cells was reduced more than 5-fold in these individuals. The reactivation of proviruses from these cells was reduced more than 4-fold and, upon activation, SAMHD1 phosphorylation was reduced 40-fold. Plasma levels of the homeostatic cytokine IL-7 and CD4 effector subpopulations TEM and TEMRA in peripheral blood were also reduced. Therefore, treatment of HIV-infected individuals with dasatinib as adjuvant of ART could disturb the reservoir reactivation and reseeding, which might have a beneficial impact to reduce its size

    Establishing Acacia salicina under dry Mediterranean conditions: The effects of nursery fertilization and tree shelters on a mid-term experiment with saline irrigation

    Get PDF
    The restoration of dry lands in the Mediterranean is a challenging task because harsh abiotic conditions hamper the counteraction of feed-back degradation processes. Active restoration through planting must be performed to deter this process. In this study, we tested the influence of mineral nutrition in the nursery (two formulations of controlled release fertilizer at two rates each) and tree protection after planting (by using tube shelters) on the nine-year performance of Acacia salicina irrigated with low-quality (saline) water. The overall survival at the end of the study period was 58.2%, with the electrical conductivity of the soil saturation extract reaching 5.4 dS·m-1 after nine years. The survival and growth (in height) were greater for seedlings fertilized with more than 1.5 g·L-1 of 9-13-18, although the survival differences became significant only after the seventh year. The basal stem diameter (BSD) of seedlings that were fertilized at higher rates was significantly greater than those that were fertilized at lower rates during the first two years of planting; the differences were no longer present thereafter. The seedlings in shelters had marginally superior survival, faster growth during the first four years, and smaller BSD values after the third year compared to those of the unprotected seedlings. In comparison with a parallel study that was conducted under drought conditions, irrigation reduced some differences among treatments, but it increased others. These results emphasize the importance of the size and mineral nutrient status of nursery stock in irrigated plantations under dry Mediterranean conditions, with highly fertilized seedlings showing superior performance. Long-term planting studies are crucial for gaining a greater understanding of seedling performance and for providing a better rationale for treatment recommendations.We gratefully acknowledge the financial support of the National Institute for Agriculture and Food Technology and Research (INIA, Spanish Department of Science and Innovation) through projects SC-94111 and OT98-001) and the Technical University of Madrid through its sabbatical program. The comments of three anonymous reviewers substantially improved this manuscript
    corecore