13 research outputs found

    Cytotoxicity of three new triazolo-pyrimidine derivatives against the plant trypanosomatid: Phytomonas sp isolated from Euphorbia characias

    Get PDF
    There is no effective chemotherapy against diseases caused by Phytomonas sp., a plant trypanosomatid responsible for economic losses in major crops. We tested three triazolo-pyrimidine complexes [two with Pt(II), and another with Ru(III)] against promastigotes of Phytomonas sp. isolated from Euphorbia characias. The incorporation of radiolabelled precursors, ultrastructural alterations and changes in the pattern of metabolite excretion were examined. Different degrees of toxicity were found for each complex: the platinun compound showed an inhibition effect on nucleic acid synthesis, provoking alterations on the levels of mitochondria, nucleus and glycosomes. These results, together with others reported previously in our laboratory about the activity of pyrimidine derivatives, reflect the potential of these compounds as agents in the treatment of Phytomonas sp.Financial support Universidad de Granada (Spain), grant BIO 2000-1429

    The CARMENES search for exoplanets around M dwarfs Guaranteed time observations Data Release 1 (2016-2020)

    Get PDF
    I. Ribas et al.[Context] The CARMENES instrument, installed at the 3.5 m telescope of the Calar Alto Observatory in Almería, Spain, was conceived to deliver high-accuracy radial velocity (RV) measurements with long-term stability to search for temperate rocky planets around a sample of nearby cool stars. Moreover, the broad wavelength coverage was designed to provide a range of stellar activity indicators to assess the nature of potential RV signals and to provide valuable spectral information to help characterise the stellar targets.[Aims] We describe the CARMENES guaranteed time observations (GTO), spanning from 2016 to 2020, during which 19 633 spectra for a sample of 362 targets were collected. We present the CARMENES Data Release 1 (DR1), which makes public all observations obtained during the GTO of the CARMENES survey.[Methods] The CARMENES survey target selection was aimed at minimising biases, and about 70% of all known M dwarfs within 10 pc and accessible from Calar Alto were included. The data were pipeline-processed, and high-level data products, including 18 642 precise RVs for 345 targets, were derived. Time series data of spectroscopic activity indicators were also obtained.[Results] We discuss the characteristics of the CARMENES data, the statistical properties of the stellar sample, and the spectroscopic measurements. We show examples of the use of CARMENES data and provide a contextual view of the exoplanet population revealed by the survey, including 33 new planets, 17 re-analysed planets, and 26 confirmed planets from transiting candidate follow-up. A subsample of 238 targets was used to derive updated planet occurrence rates, yielding an overall average of 1.44 ± 0.20 planets with 1 M⊕ < Mpl sin i < 1000 M⊕ and 1 day < Porb < 1000 days per star, and indicating that nearly every M dwarf hosts at least one planet. All the DR1 raw data, pipeline-processed data, and high-level data products are publicly available online.[Conclusions] CARMENES data have proven very useful for identifying and measuring planetary companions. They are also suitable for a variety of additional applications, such as the determination of stellar fundamental and atmospheric properties, the characterisation of stellar activity, and the study of exoplanet atmospheres.CARMENES is an instrument at the Centro Astronómico Hispano en Andalucía (CAHA) at Calar Alto (Almería, Spain), operated jointly by the Junta de Andalucía and the Instituto de Astrofísica de Andalucía (CSIC). CARMENES was funded by the Max-Planck-Gesellschaft (MPG), the Consejo Superior de Investigaciones Científicas (CSIC), the Ministerio de Economía y Competitividad (MINECO) and the European Regional Development Fund (ERDF) through projects FICTS-2011-02, ICTS-2017-07-CAHA-4, and CAHA16-CE-3978, and the members of the CARMENES Consortium (Max-Planck-Institut für Astronomie, Instituto de Astrofísica de Andalucía, Landessternwarte Königstuhl, Institut de Ciències de l’Espai, Institut für Astrophysik Göttingen, Universidad Complutense de Madrid, Thüringer Landessternwarte Tautenburg, Instituto de Astrofísica de Canarias, Hamburger Sternwarte, Centro de Astrobiología and Centro Astronómico Hispano-Alemán), with additional contributions by the MINECO, the Deutsche Forschungsgemeinschaft (DFG) through the Major Research Instrumentation Programme and Research Unit FOR2544 “Blue Planets around Red Stars”, the Klaus Tschira Stiftung, the states of Baden-Württemberg and Niedersachsen, and by the Junta de Andalucía. We acknowledge financial support from the Spanish Agencia Estatal de Investigación of the Ministerio de Ciencia e Innovación (AEI-MCIN) and the ERDF “A way of making Europe” through projects PID2020-117493GB-I00, PID2019-109522GB-C5[1:4], PID2019-110689RB-I00, PID2019-107061GB-C61, PID2019-107061GB-C64, PGC2018-098153-B-C33, PID2021-125627OB-C31/AEI/10.13039/501100011033, and the Centre of Excellence “Severo Ochoa” and “María de Maeztu” awards to the Institut de Ciències de l’Espai (CEX2020-001058-M), Instituto de Astrofísica de Canarias (CEX2019-000920-S), Instituto de Astrofísica de Andalucía (SEV-2017-0709), and Centro de Astrobiología (MDM-2017-0737). We also benefited from additional funding from: the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya and the Agència de Gestió d’Ajuts Universitaris i de Recerca of the Generalitat de Catalunya, with additional funding from the European FEDER/ERDF funds, and from the Generalitat de Catalunya/CERCA programme; the DFG through the Major Research Instrumentation Programme and Research Unit FOR2544 “Blue Planets around Red Stars” (RE 2694/8-1); the University of La Laguna through the Margarita Salas Fellowship from the Spanish Ministerio de Universidades ref. UNI/551/2021-May-26, and under the EU Next Generation funds; the Gobierno de Canarias through projects ProID2021010128 and ProID2020010129; the Spanish MICINN under Ramón y Cajal programme RYC-2013-14875; the “Fondi di Ricerca Scientifica d’Ateneo 2021” of the University of Rome “Tor Vergata”; and the programme “Alien Earths” supported by the National Aeronautics and Space Administration (NASA) under agreement No. 80NSSC21K0593. TPeer reviewe

    Effectiveness of a transdiagnostic internet-based protocol for the treatment of emotional disorders versus treatment as usual in specialized care: study protocol for a randomized controlled trial

    Full text link

    Combined Passive Heating Systems in Mediterranean, Low-Cost, Greenhouse Cucumber Crops

    No full text
    Greenhouse microclimate and crop response of winter cucumber cycles grown in unheated Mediterranean greenhouses with representative combinations of passive heating systems (fixed, plastic screen with and without black mulch; movable thermal screen with black mulch; and double-layer plastic covering with black mulch) were evaluated in Almería, SE Spain. In the first experiment, the black mulch in combination with a movable or fixed screen increased the marketable cucumber yield by 14%, which appears to be mostly attributable to higher substrate temperatures induced by the black mulch in the cold period. Moreover, the black mulch in combination with a fixed screen frequently led to screen water condensation. The use of a movable screen, rather than a fixed one, in combination with a black mulch increased the first-class cucumber yield in the second experiment and reduced the non-marketable one in the first experiment. This might be mainly attributable to the higher incoming shortwave radiation in the cold period. Moreover, the movable screen reduced the risk of water condensation on the screen and the crop. The cucumber in the greenhouse with the double-layer covering and black mulch, compared to that with movable screen and black mulch, received lower daily incoming shortwave radiation, particularly, during the second half of the cycle (mainly due to the formation of water condensation droplets on the lower surface of the external plastic film), which reduced crop yield. Further field research is needed to better quantify the most limiting factor for growth (substrate/soil or air temperature, radiation, or water condensation) in Mediterranean greenhouse crops
    corecore