8 research outputs found

    Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb., nov.

    Get PDF
    Although Anoxybacillus and Geobacillus, two genera of thermophilic bacteria close to the genus Bacillus, have only been described recently, the number of species in these genera has increased rapidly. Four thermophilic, lipolytic strains (DR01, DR02, DR03 and DR04) isolated from a hot spring in Veracruz (Mexico), which could not be identified phenotypically, were subjected to 16S rRNA gene sequence analysis. Three strains were identified as belonging to the genus Anoxybacillus, but strain DR03 was identified as Geobacillus pallidus. This result led us to perform a phylogenetic analysis of the genera Anoxybacillus and Geobacillus based on 16S rRNA gene sequences from all the type strains of these genera. Phylogenetic trees showed three major clusters, Anoxybacillus-Geobacillus tepidamans, Geobacillus sensu stricto and Geobacillus pallidus, while the 16S rRNA gene sequences of G. pallidus (DR03 and the type strain) showed low similarity to sequences of Anoxybacillus (92.5-95.1 %) and Geobacillus (92.8-94.5 %) species, as well as to Bacillus subtilis (92.2-92.4 %). In addition, G. pallidus could be differentiated from Anoxybacillus and Geobacillus on the basis of DNA G+C content and fatty acid and polar lipid profiles. From these results, it is proposed that Geobacillus pallidus should be classified in a novel genus, for which we propose the name Aeribacillus, as Aeribacillus pallidus gen. nov., comb. nov. The type strain of Aeribacillus pallidus is H12T (=ATCC 51176T =DSM 3670T =LMG 19006T)

    Diversity of Bacterioplankton and Bacteriobenthos from the Veracruz Reef System, Southwestern Gulf of Mexico

    Get PDF
    Bacterial diversity was explored among field samples and cultured isolates from coral reefs within the Veracruz Reef System. Bacterioplankton and bacteriobenthos were characterized by pyrosequencing 16S rRNA genes. Identified sequences belonged to the kingdom Bacteria and classified into 33 phyla. Proteobacteria (likely SAR11 clade) dominated in collective field samples, whereas Firmicutes were the most abundant taxa among cultured isolates. Bioinformatic sorting of sequences to family level revealed 223 bacterial families. Pseudomonadaceae, Exiguobacteraceae and Bacillaceae were dominant among cultured isolates. Vibrionaceae, Alteromonadaceae, and Flavobacteriaceae dominated in reef-associated sediments, whereas Rickettsiaceae and Synechoccaceae were more highly represented in the water column. Bacterial communities from sediments were more diverse than from the water column. This study reveals cryptic bacterial diversity among microenvironmental components of marine microbial reef communities subject to differential influence of anthropogenic stressors. Such investigations are critical for constructing scenarios of environmentally induced shifts in bacterial biodiversity and species composition

    Thermophilic Bacteria From Mexican Thermal Environments: Isolation and Potential Applications

    No full text
    Extremophiles are microorganisms that possess application possibilities in several industrial fields, including agricultural, chemical, laundry, pharmaceutical, food, petroleum and bioremediation. This work reports the isolation of 19 thermophilic, alkalitolerant and halotolerant bacterial strains from two thermal sites in Veracruz, México: El Carrizal thermal pool and Los Baños hot spring. These strains belong to the Geobacillus, Anoxybacillus and Aeribacillus genera. The strains produce lipases, proteases, and amylases under thermophilic conditions. They may have good potential for application in microbial enhanced oil recovery, since they are thermophilic and halotolerant, produce exopolymers (up to 11.8 mg/mg) and acids, show emulsifying activity (E24 up to 7.5%), and are able to grow in kerosene as carbon source; these strains may also be used in biodesulphurization since they can grow in dibenzothiophene producing 2-hydroxybiphenyl under thermophilic conditions (up to 2.9 mg/L)

    Antioxidant and antiproliferative activity of blue corn and tortilla from native maize

    No full text
    Abstract Background Blue corn is a cereal rich in phenolic compounds used to make blue tortillas. Tortillas are an important part of the Mexican diet. Blue corn and tortilla represent an important source of the natural antioxidants anthocyanins. However, studies on their biological activity on cancer cell lines are limited. The goal of this study was to evaluate the antioxidant and antiproliferative activity of blue corn and tortilla on different cancer cell lines. Methods Total polyphenol content, monomeric anthocyanins, and antioxidant activity by the DPPH and TBARS methods of blue corn and tortilla were determined. The anthocyanin profile of tortilla was obtained by means of HPLC–ESI-MS. The antiproliferative activity of blue corn and tortilla extract on HepG2, H-460, Hela, MCF-7 and PC-3 was evaluated by the MTT assay. Results Blue corn had higher content of total polyphenols and monomeric anthocyanins as well as lower percentage of polymeric color than tortilla; however, both showed similar antioxidant activity by DPPH. In addition, although a higher degradation of anthocyanins was observed on tortilla extract, both extracts inhibited lipid peroxidation (IC50) at a similar concentration. The anthocyanin profile showed 28 compounds which are primarily derived from cyanidin, including acylated anthocyanins and proanthocyanidins. Blue corn and tortilla extracts showed antiproliferative effects against HepG2, H-460, MCF-7 and PC-3 cells at 1000 μg/mL, however Hela cells were more sensitive at this concentration. Conclusion This is the first report to demonstrate anticancer properties in vitro of tortilla derived from blue corn, suggesting that this product has beneficial health effects. In addition, blue corn could be a potential source of nutraceuticals with anticancer activity
    corecore