46 research outputs found

    "Lactobacillus paracasei" probiotic properties and survivability under stress-induced by processing and storage of ice cream bar or ice-lolly

    Get PDF
    ABSTRACT: Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. The aim of this study was to identify genotypically lactobacilli strains isolated from newborn stools and selecting strain based on probiotic properties (gastrointestinal tolerance, antibiotic susceptibility, inhibition of pathogen biofilm formation, absence of alfa or gamma-blood hemolysis, and lysozyme sensibility) and technological properties of surviving either in ice cream bar or ice-lolly. Reduction of 1.2log cfu ml-1 of the Lactobacillus paracasei strain was observed after exposure through in vitro gastrointestinal conditions. It inhibited biofilms of Escherichia coli, Salmonella Typhimurium and Candida albicans by mechanisms of competition, exclusion and displacement, and was resistant up to 3000μg ml-1 of egg white lysozyme. It presented neither alfa nor gamma-hemolysis or was antibiotic resistant to usual antibiotics for human use. Microbial survivability in ice cream bar or ice-lolly was assessed up to 21 days of storage at -18°C. Viability was maintained in ice cream bar, but there was a reduction of almost 2.0logs in ice-lolly

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Correlation between natural microbial load and formation of ropy slime affecting the superficial color of vacuum-packaged cooked sausage

    No full text
    : The present study outlines a comprehensive correlation between the natural microbial load, which is predominantly composed of heat-resistant sporous-forming Bacillus, and the changes in the original properties related to the superficial color of vacuum-packaged cooked sausages. For this purpose, microbial growth curves were plotted by stimulating the growth of the natural microbiota in sausage packages at different temperatures. The correlations were investigated during sample incubation by the instrumental evaluation of color and the ropy slime detection on the sausage surface. The entrance of the natural microbiota into the stationary phase (ca. 9.3 log cfu/g) resulted in changes in the superficial color, which was demonstrated by the discoloration of vacuum-packaged cooked sausages. Therefore, it seems to be a suitable borderline for predictive models applied in durability studies that aim to estimate the period in which vacuum-packaged cooked sausages keep their typical superficial color, anticipating product refusal in markets

    Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces

    No full text
    Probiotic bacteria are receiving growing interest, particularly for the preparation of functional foods. In the present study, eight Lactobacillus strains, newly isolated from infant feces, were investigated for the presence of probiotic properties such as antimicrobial susceptibility, hemolytic activity, resistance to simulated gastro-intestinal conditions, bile salts hydrolytic activity, inhibitory ability against biofilm formation by other bacteria, attachment to HT-29 human cancer cells and anti-cancer activity. All the strains tested highlighted interesting properties, but L. paracasei DTA93 and L. paracasei DTA81 appeared of particular interest. Some properties of these two strains resulted similar, and in some cases superior, to the reference widespread probiotic commercial strain L. rhamnosus GG. Strain L. paracasei DTA81 possesses amazingly high adherence ability to HT-29 cells, about ten times higher than that of L. rhatnnosus GG. Moreover, L. paracasei DTA93 and L. paracasei DTA81 were able to effectively inhibit biofilm formation of Escherichia coli and Listeria innocua

    Potentially Postbiotic-Containing Preservative to Extend the Use-By Date of Raw Chicken Sausages and Semifinished Chicken Products

    No full text
    This study aimed to evaluate the use of potentially postbiotic-containing preservative (PPCP), produced in a semiculture fermentation system with Lacticaseibacillus paracasei DTA 83 and Saccharomyces cerevisiae var. boulardii 17, to extend the use-by date of raw chicken sausages and semifinished chicken products. Microorganisms associated with the spoilage of chicken products were stimulated to grow by pair incubation of the products at two different temperatures and with collection at different times. The turbidity method was performed to evaluate the microbial susceptibility to PPCP. PPCP was added in chicken products to obtain an in situ partial inhibitory effect on spoilage microorganisms to extend the use-by date. The in vitro trial showed total inhibition of the microbial growth by adding above 3.0% of PPCP. Although this concentration showed a remarkable inhibitory potential, its addition can severely impact the formulation cost. Thus, the application of doses with partial microbial inhibition may be a suitable strategy for the use of PPCP in chicken products. The results revealed that cold chain management and couse of PPCP in chicken products extended the proposed use-by date, suggesting an alternative food preservation technology for the use of naturally derived compounds

    Potentially Postbiotic-Containing Preservative to Extend the Use-By Date of Raw Chicken Sausages and Semifinished Chicken Products

    No full text
    This study aimed to evaluate the use of potentially postbiotic-containing preservative (PPCP), produced in a semiculture fermentation system with Lacticaseibacillus paracasei DTA 83 and Saccharomyces cerevisiae var. boulardii 17, to extend the use-by date of raw chicken sausages and semifinished chicken products. Microorganisms associated with the spoilage of chicken products were stimulated to grow by pair incubation of the products at two different temperatures and with collection at different times. The turbidity method was performed to evaluate the microbial susceptibility to PPCP. PPCP was added in chicken products to obtain an in situ partial inhibitory effect on spoilage microorganisms to extend the use-by date. The in vitro trial showed total inhibition of the microbial growth by adding above 3.0% of PPCP. Although this concentration showed a remarkable inhibitory potential, its addition can severely impact the formulation cost. Thus, the application of doses with partial microbial inhibition may be a suitable strategy for the use of PPCP in chicken products. The results revealed that cold chain management and couse of PPCP in chicken products extended the proposed use-by date, suggesting an alternative food preservation technology for the use of naturally derived compounds

    Complete genome sequence of Xanthomonas citri pv. anacardii strain IBSBF2579 from Brazil

    No full text
    The bacterium Xanthomonas citri pv. anacardii is the agent of angular leaf spot of the cashew tree (Anacardium occidentale L.). The complete genome sequencing of the strain IBSBF2579 was done on an Illumina HiSeq 2500 platform. The de novo assembly of the X. citri pv. anacardii strain IBSBF2579 genome yielded 133 contigs, with a size of 5,329,247 bp and a G+C content of 64.03%. The prediction was performed by GeneMarkS and the automatic annotation by Rapid Annotations using Subsystems Technology (RAST), with 4,406 identified genes.Fil: Silva Junior, Wilson José. Universidad Federal Rural Pernambuco; BrasilFil: Farias, Antonio Roberto Gomes. Universidad Federal Rural Pernambuco; BrasilFil: Bernardi Lima, Nelson. Universidad Federal Rural Pernambuco; Brasil. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Benko-Iseppon, Ana Maria. Universidad Federal Rural Pernambuco; BrasilFil: Aburjaile, Flávia. Universidad Federal Rural Pernambuco; BrasilFil: Balbino, Valdir Queiroz. Universidad Federal Rural Pernambuco; BrasilFil: Falcão, Raul Maia. Universidad Federal Rural Pernambuco; BrasilFil: Paiva Júnior, Sérgio de Sa Leitão. Universidad Federal Rural Pernambuco; BrasilFil: Sousa-Paula, Lucas Christian. Universidad Federal Rural Pernambuco; BrasilFil: Mariano, Rosa Lima Ramos. Universidad Federal Rural Pernambuco; BrasilFil: Souza, Elineide Barbosa. Universidad Federal Rural Pernambuco; BrasilFil: Gama, Marco Aurélio Siqueira. Universidad Federal Rural Pernambuco; Brasi

    Vector competence of Culex quinquefasciatus from Brazil for West Nile Virus

    No full text
    Coordination of Superior Level Staff Improvement (CAPES) (Process number: 88887.659754/2021-00) and Graduate Program in Parasitary Biology in the Amazon Region (PPGBPA) of State University of Pará (Edital Nº 013/2021-UEPA).State University of Pará. Center of Biological and Health Sciences. Graduate Program in Parasitary Biology in the Amazon Region. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.State University of Pará. Center of Biological and Health Sciences. Graduate Program in Parasitary Biology in the Amazon Region. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Federal University of Pará. Biological Sciences Institute. Graduate Program in Biology of Infectious and Parasitary Agents. Belém, PA, Brazil.Federal University of Pará. Biological Sciences Institute. Graduate Program in Biology of Infectious and Parasitary Agents. Belém, PA, Brazil.State University of Pará. Center of Biological and Health Sciences. Graduate Program in Parasitary Biology in the Amazon Region. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.West Nile virus is characterized as a neurotropic pathogen, which can cause West Nile fever and is transmitted by mosquitoes of the genus Culex. In 2018, the Instituto Evandro Chagas performed the first isolation of a WNV strain in Brazil from a horse brain sample. The present study aimed to evaluate the susceptibility of orally infected Cx. quinquefasciatus from the Amazon region of Brazil to become infected and transmit the WNV strain isolated in 2018. Oral infection was performed with blood meal artificially infected with WNV, followed by analysis of infection, dissemination, and transmission rates, as well as viral titers of body, head, and saliva samples. At the 21st dpi, the infection rate was 100%, the dissemination rate was 80%, and the transmission rate was 77%. These results indicate that Cx. quinquefasciatus is susceptible to oral infection by the Brazilian strain of WNV and may act as a possible vector of the virus since it was detected in saliva from the 21st dpi

    Negeviruses isolated from mosquitoes in the Brazilian Amazon

    No full text
    Instituto Evandro Chagas/SVS/MS, Vale S.A and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Pós-Graduação em Virologia. Ananindeua, PA, BrasilBackground: There are several groups of viruses including Insect Specific Viruses (ISV) such as the taxon Negevirus, a group of viruses phylogenetically related to plant viruses. Negeviruses replicate in mosquito cells, but not in vertebrate cells. Methods: Pools of hematophagous arthropods were inoculated in Vero and C6/36 cells. The cells were observed to detect possible cytopathic effect. Then, indirect immunofluorescence, RT-PCR, and nucleotide sequencing were performed. Results: Seven samples which presented negative results for flaviviruses, alphaviruses and bunyaviruses, but showed cytopathic effect in C6/36 cells were sequenced. We identified the occurrence of a variety of ISVs, most of them belonging to the taxon Negevirus: The Brejeira, Negev, Cordoba and Wallerfield viruses, including a new virus for science, tentatively named Feitosa virus. Conclusions: We detected negeviruses in the Amazon region, including two viruses that were isolated for the first time in Brazil: Cordoba virus and the Negev virus and, a new virus for science: the Feitosa virus

    The importance of entomo-virological investigation of Yellow Fever Virus to strengthen surveillance in Brazil

    No full text
    Brazilian National Council for Scientific and Technological Development (CNPq), grant numbers 314522/2021-2 to A.C.R.C., 166720/2017-8 and 106256/2018-1, to L.H.A.H, and 310295/2021-1, to P.F.d.C.V. Funding was also provided by National Institute of Science and Technology for Emerging and Reemerging Viruses in partnership with CNPq, grant number 406360/2022-7, to P.F.d.C.V.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Pará State University. Center for Biological and Health Sciences. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Pará State University. Center for Biological and Health Sciences. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Pará State University. Center for Biological and Health Sciences. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Pará State University. Center for Biological and Health Sciences. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Federal University of Pará. Institute of Biological Sciences. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Goiás Public Health Laboratory. Goiânia, GO, Brazil.Goiás Public Health Laboratory. Goiânia, GO, Brazil.Ministry of Health. Health and Environment Surveillance Secretariat. Brasília, DF, Brazil.World Health Organization. Pan American Health Organization. Public Health Emergency Department. Brasília, DF, Brazil.Oswaldo Cruz Foundation. René Rachou Institute. Belo Horizonte, MG, Brazil.Oswaldo Cruz Foundation. René Rachou Institute. Belo Horizonte, MG, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.The largest outbreak of sylvatic yellow fever virus (YFV) in eight decades was recorded in Brazil between 2016–2018. Besides human and NHP surveillance, the entomo-virological approach is considered as a complementary tool. For this study, a total of 2904 mosquitoes of the Aedes, Haemagogus and Sabethes genera were collected from six Brazilian states (Bahia, Goiás, Mato Grosso, Minas Gerais, Pará, and Tocantins) and grouped into 246 pools, which were tested for YFV using RT-qPCR. We detected 20 positive pools from Minas Gerais, 5 from Goiás, and 1 from Bahia, including 12 of Hg. janthinomys and 5 of Ae. albopictus. This is the first description of natural YFV infection in this species and warns of the likelihood of urban YFV re-emergence with Ae. albopictus as a potential bridge vector. Three YFV sequences from Hg. janthinomys from Goiás and one from Minas Gerais, as well as one from Ae. albopictus from Minas Gerais were clustered within the 2016–2018 outbreak clade, indicating YFV spread from Midwest and its infection in a main and likely novel bridging vector species. Entomo-virological surveillance is critical for YFV monitoring in Brazil, which could highlight the need to strengthen YFV surveillance, vaccination coverage, and vector control measures
    corecore