17,809 research outputs found

    Discovery of three z>6.5 quasars in the VISTA Kilo-degree Infrared Galaxy (VIKING) survey

    Get PDF
    Studying quasars at the highest redshifts can constrain models of galaxy and black hole formation, and it also probes the intergalactic medium in the early universe. Optical surveys have to date discovered more than 60 quasars up to z~6.4, a limit set by the use of the z-band and CCD detectors. Only one z>6.4 quasar has been discovered, namely the z=7.08 quasar ULAS J1120+0641, using near-infrared imaging. Here we report the discovery of three new z>6.4 quasars in 332 square degrees of the Visible and Infrared Survey Telescope for Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, thus extending the number from 1 to 4. The newly discovered quasars have redshifts of z=6.60, 6.75, and 6.89. The absolute magnitudes are between -26.0 and -25.5, 0.6-1.1 mag fainter than ULAS J1120+0641. Near-infrared spectroscopy revealed the MgII emission line in all three objects. The quasars are powered by black holes with masses of ~(1-2)x10^9 M_sun. In our probed redshift range of 6.44<z<7.44 we can set a lower limit on the space density of supermassive black holes of \rho(M_BH>10^9 M_sun) > 1.1x10^(-9) Mpc^(-3). The discovery of three quasars in our survey area is consistent with the z=6 quasar luminosity function when extrapolated to z~7. We do not find evidence for a steeper decline in the space density of quasars with increasing redshift from z=6 to z=7.Comment: 14 pages, 9 figures. Published in Ap

    SPIDER X - Environmental effects in central and satellite early-type galaxies through the stellar fossil record

    Full text link
    A detailed analysis of how environment affects the star formation history of early-type galaxies (ETGs) is undertaken via high signal to noise ratio stacked spectra obtained from a sample of 20,977 ETGs (morphologically selected) from the SDSS-based SPIDER survey. Two major parameters are considered for the study: the central velocity dispersion (sigma), which relates to local drivers of star formation, and the mass of the host halo, which relates to environment-related effects. In addition, we separate the sample between centrals (the most massive galaxy in a halo) and satellites. We derive trends of age, metallicity, and [alpha/Fe] enhancement, with sigma. We confirm that the major driver of stellar population properties in ETGs is velocity dispersion, with a second-order effect associated to the central/satellite nature of the galaxy. No environmental dependence is detected for satellite ETGs, except at low sigma - where satellites in groups or in the outskirts of clusters tend to be younger than those in the central regions of clusters. In contrast, the trends for centrals show a significant dependence on halo mass. Central ETGs in groups (i.e. with a halo mass >10^12.5 M_Sun) have younger ages, lower [alpha/Fe], and higher internal reddening, than "isolated" systems (i.e. centrals residing in low-mass, <10^12.5 M_Sun, halos). Our findings imply that central ETGs in groups formed their stellar component over longer time scales than "isolated" centrals, mainly because of gas-rich interactions with their companion galaxies.Comment: 22 pages, 19 figures, accepted for publication in MNRA

    Site specific spin dynamics in BaFe2As2: tuning the ground state by orbital differentiation

    Get PDF
    The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2_{2}As2_{2} single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3dd bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content interestingly occurs independently on the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations combined with the resultant particular symmetry of the Fe 3dd bands are propitious ingredients to the emergence of superconductivity in this class of materials.Comment: 6 pages, 5 figure

    Nuclear halo and the coherent nuclear interaction

    Full text link
    The unusual structure of Li11, the first halo nucleus found, is analyzed by the Preparata model of nuclear structure. By applying Coherent Nucleus Theory, we obtain an interaction potential for the halo-neutrons that rightly reproduces the fundamental state of the system.Comment: 9 pages Submitted to International Journal of Modern Physics E (IJMPE
    • …
    corecore