173 research outputs found

    Identidad corporativa y la percepción de los clientes de CONSULTING & MANAGEMENT JÓVENES EMPRENDEDORES en Rímac, Lima - 2022

    Get PDF
    En el presente estudio “Identidad corporativa y la percepción de los clientes de CONSULTING & MANAGEMENT JÓVENES EMPRENDEDORES en Rímac, Lima – 2022”, se abarcó como objetivo analizar la relación de la identidad corporativa y la percepción de los clientes de CONSULTING & MANAGEMENT JÓVENES EMPRENDEDORES en Rímac, Lima - 2022. El tipo de investigación fue aplicada, con diseño no experimental y de enfoque cuantitativo, también con una población de 150 clientes, la cual se obtuvo como muestra de 108 personas, se realizó la técnica de la encuesta, y como instrumento se utilizó el cuestionario (14 ítems), el cual se comprobó una buena confiabilidad de 0,845 según Alfa de Cronbach. Los resultados indicaron un 0,728, lo cual se definió coeficiente de correlación positiva alta y con una significancia de 0,000 (p=0,000 <0,05), confirmando que existe una relación entre las variables identidad corporativa y percepción de los clientes de la empresa CONSULTING & MANAGEMENT JÓVENES EMPRENDEDORES en Rímac, Lima – 2022. Para finalizar se concluyó que la identidad corporativa posee una relación con la percepción de los clientes, debido que es fundamental para que las empresas se identifiquen correctamente y expresen el mensaje planeado logrando mantener su atención y una percepción positiva

    Ruxolitinib in combination with prednisone and nilotinib exhibit synergistic effects in human cells lines and primary cells from myeloproliferative neoplasms

    Get PDF
    Ruxolitinib is the front-line non-palliative treatment for myelofibrosis (MF). However, a significant number of patients lose or present suboptimal response, are resistant or have unacceptable toxicity. In an attempt to improve response and avoid the adverse effects of this drug, we evaluated the combination of 17 drugs with ruxolitinib in ex vivo models of peripheral blood mononuclear cells from MF patients and cell lines. We found that the combination ruxolitinib and nilotinib had a synergistic effect against MF cells (ΔEC50 nilotinib, -21.6%). Moreover, the addition of prednisone to combined ruxolitinib/nilotinib improved the synergistic effect in all MF samples studied. We evaluated the molecular mechanisms of combined ruxolitinib/nilotinib/prednisone and observed inhibition of JAK/STAT (STAT5, 69.2+11.8% inhibition) and MAPK (ERK, 29.4+4.5% inhibition) signaling pathways. Furthermore, we found that the triple therapy combination inhibited collagen protein and COL1A1 gene expression in human bone marrow mesenchymal cells. Taken together, we provide evidence that combined ruxolitinib/nilotinib/prednisone is a potential therapy for MF, possibly through the anti-fibrotic effect of nilotinib, the immunomodulatory effect of ruxolitinib and prednisone, and the anti-proliferative effect of ruxolitinib. This combination will be further investigated in a phase Ib/II clinical trial in MF.This study was supported by the Subdireccion General de Investigacion Sanitaria (Instituto de Salud Carlos III, Spain) grants PI13/02387 and PI16/01530, and the CRIS against Cancer foundation grant 2014/0120. M.L. holds a postdoctoral fellowship of the Spanish Ministry of Economy and Competitiveness (FPDI-2013-16409).S

    The Sensitivity of HAWC to High-Mass Dark Matter Annihilations

    Full text link
    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross-section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross-sections below thermal. HAWC should also be sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross-section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR

    VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    Full text link
    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages, 10 figures). Corresponding authors: A.Marinelli and D.Zaboro

    All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    Full text link
    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken from 234 days between June 2016 to February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of 2.49±0.01-2.49\pm0.01 prior to a break at (45.7±0.1(45.7\pm0.1) TeV, followed by an index of 2.71±0.01-2.71\pm0.01. The spectrum also respresents a single measurement that spans the energy range between direct detection and ground based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review

    Constraining the pˉ/p\bar{p}/p Ratio in TeV Cosmic Rays with Observations of the Moon Shadow by HAWC

    Get PDF
    An indirect measurement of the antiproton flux in cosmic rays is possible as the particles undergo deflection by the geomagnetic field. This effect can be measured by studying the deficit in the flux, or shadow, created by the Moon as it absorbs cosmic rays that are headed towards the Earth. The shadow is displaced from the actual position of the Moon due to geomagnetic deflection, which is a function of the energy and charge of the cosmic rays. The displacement provides a natural tool for momentum/charge discrimination that can be used to study the composition of cosmic rays. Using 33 months of data comprising more than 80 billion cosmic rays measured by the High Altitude Water Cherenkov (HAWC) observatory, we have analyzed the Moon shadow to search for TeV antiprotons in cosmic rays. We present our first upper limits on the pˉ/p\bar{p}/p fraction, which in the absence of any direct measurements, provide the tightest available constraints of 1%\sim1\% on the antiproton fraction for energies between 1 and 10 TeV.Comment: 10 pages, 5 figures. Accepted by Physical Review

    Search for very-high-energy emission from Gamma-ray Bursts using the first 18 months of data from the HAWC Gamma-ray Observatory

    Full text link
    The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an extensive air shower detector operating in central Mexico, which has recently completed its first two years of full operations. If for a burst like GRB 130427A at a redshift of 0.34 and a high-energy component following a power law with index -1.66, the high-energy component is extended to higher energies with no cut-off other than from extragalactic background light attenuation, HAWC would observe gamma rays with a peak energy of \sim300 GeV. This paper reports the results of HAWC observations of 64 gamma-ray bursts (GRBs) detected by Swift\mathit{Swift} and Fermi\mathit{Fermi}, including three GRBs that were also detected by the Large Area Telescope (Fermi\mathit{Fermi}-LAT). An ON/OFF analysis method is employed, searching on the time scale given by the observed light curve at keV-MeV energies and also on extended time scales. For all GRBs and time scales, no statistically significant excess of counts is found and upper limits on the number of gamma rays and the gamma-ray flux are calculated. GRB 170206A, the third brightest short GRB detected by the Gamma-ray Burst Monitor on board the Fermi\mathit{Fermi} satellite (Fermi\mathit{Fermi}-GBM) and also detected by the LAT, occurred very close to zenith. The LAT measurements can neither exclude the presence of a synchrotron self-Compton (SSC) component nor constrain its spectrum. Instead, the HAWC upper limits constrain the expected cut-off in an additional high-energy component to be less than 100 GeV100~\rm{GeV} for reasonable assumptions about the energetics and redshift of the burst.Comment: 19 pages, 6 figures, published in Ap
    corecore