1,453 research outputs found

    Role of glucose as a modulator of anabolic and catabolic gene expression in normal and osteoarthritic human chondrocytes

    Get PDF
    Cartilage matrix homeostasis involves a dynamic balance between numerous signals that modulate chondrocyte functions. This study aimed at elucidating the role of the extracellular glucose concentration in modulating anabolic and catabolic gene expression in normal and osteoarthritic (OA) human chondrocytes and its ability to modify the gene expression responses induced by pro-anabolic stimuli, namely Transforming Growth Factor-β (TGF). For this, we analyzed by real time RT-PCR the expression of articular cartilage matrix-specific and non-specific genes, namely collagen types II and I, respectively. The expression of the matrix metalloproteinases (MMPs)-1 and -13, which plays a major role in cartilage degradation in arthritic conditions, and of their tissue inhibitors (TIMP) was also measured. The results showed that exposure to high glucose (30 mM) increased the mRNA levels of both MMPs in OA chondrocytes, whereas in normal ones only MMP-1 increased. Collagen II mRNA was similarly increased in normal and OA chondrocytes, but the increase lasted longer in the later. Exposure to high glucose for 24 h prevented TGF-induced downregulation of MMP-13 gene expression in normal and OA chondrocytes, while the inhibitory effect of TGF on MMP-1 expression was only partially reduced. Other responses were not significantly modified. In conclusion, exposure of human chondrocytes to high glucose, as occurs in vivo in diabetes mellitus patients and in vitro for the production of engineered cartilage, favors the chondrocyte catabolic program. This may promote articular cartilage degradation, facilitating OA development and/or progression, as well as compromise the quality and consequent in vivo efficacy of tissue engineered cartilage

    FRACTURES OF THE NECK OF THE TALUS: EVALUATION OF REPRODUCIBILITY OF HAWKINS' CLASSIFICATION

    Get PDF
    Objective: To evaluate the intraobserver and interobserver reproducibility of Hawkins' classification for fractures of the neck of the talus. Methods: 20 random cases of fracture of the talus were selected, to be defined according to the classification of types by eight orthopedic surgeons, 13 orthopedic residents and 15 radiology residents. Results: Using the statistical test of Landis and Koch, measurements of 0.627 and 0.668 were obtained in the first and second evaluations, respectively. These values define a satisfactory agreement for Hawkins' classification. Conclusion: We conclude that this classification is reproducible between observers, with better values for the more experienced observers. Level of Evidence I, Study Diagnostic - Investigating a diagnostic test.20317017

    Challenges in Smart Low-Temperature District Heating Development

    Get PDF
    Previous research and development shows that low temperature district heating (LTDH) system is economic feasible for low energy buildings and buildings at sparse areas. Coupling with reduced network temperature and well-designed district heating (DH) networks, LTDH can reduce network heat loss by up to 75% comparing with the current medium temperature district heating system. Further system efficiency improvement can be achieved through a holistic approach which includes measures such as reduced system design margin, enhanced demand side management and improved operation of decentralized heat generations. The realization of such efficiency improvement measures will increase the demand for well functioned monitoring, communication, control and decision support tools and services to coordinate each component in the DH system

    Magnetoresistance through a single molecule

    Full text link
    The use of single molecules to design electronic devices is an extremely challenging and fundamentally different approach to further downsizing electronic circuits. Two-terminal molecular devices such as diodes were first predicted [1] and, more recently, measured experimentally [2]. The addition of a gate then enabled the study of molecular transistors [3-5]. In general terms, in order to increase data processing capabilities, one may not only consider the electron's charge but also its spin [6,7]. This concept has been pioneered in giant magnetoresistance (GMR) junctions that consist of thin metallic films [8,9]. Spin transport across molecules, i.e. Molecular Spintronics remains, however, a challenging endeavor. As an important first step in this field, we have performed an experimental and theoretical study on spin transport across a molecular GMR junction consisting of two ferromagnetic electrodes bridged by a single hydrogen phthalocyanine (H2Pc) molecule. We observe that even though H2Pc in itself is nonmagnetic, incorporating it into a molecular junction can enhance the magnetoresistance by one order of magnitude to 52%.Comment: To appear in Nature Nanotechnology. Present version is the first submission to Nature Nanotechnology, from May 18th, 201

    Inflammation and adipose tissue: effects of progressive load training in rats

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Cytokines (IL-6, IL-10 and TNF-α) are increased after exhaustive exercise in the rat retroperitoneal (RPAT) and mesenteric adipose tissue (MEAT) pads. On the other hand, these cytokines show decreased expression in these depots in response to a chronic exercise protocol. However, the effect of exercise with overload combined with a short recovery period on pro- and anti-inflammatory cytokine expression is unknown. In the present study, we investigated the regulation of cytokine production in the adipose tissue of rats after an overtraining-inducing exercise protocol.</p> <p>Methods</p> <p>Male Wistar rats were divided into four groups: Control (C), Trained (Tr), Overtrained (OT) and recovered overtrained (R). Cytokines (IL-6, TNF-α and IL-10) levels and Toll Like Receptor 4 (TLR4), Nuclear Factor kBp65 (NF-kBp65), Hormone Sensitive Lipase (HSL) and, Perilipin protein expression were assessed in the adipose tissue. Furthermore, we analysed plasma lipid profile, insulin, testosterone, corticosterone and endotoxin levels, and liver triacylglycerol, cytokine content, as well as apolipoprotein B (apoB) and TLR4 expression in the liver.</p> <p>Results</p> <p>OT and R groups exhibited reduced performance accompanied by lower testosterone and increased corticosterone and endotoxin levels when compared with the control and trained groups. IL-6 and IL-10 protein levels were increased in the adipose tissue of the group allowed to recover, in comparison with all the other studied groups. TLR-4 and NF-kBp65 were increased in this same group when compared with both control and trained groups. The protein expression of HSL was increased and that of Perilipin, decreased in the adipose in R in relation to the control. In addition, we found increased liver and serum TAG, along with reduced apoB protein expression and IL-6 and IL-10 levels in the of R in relation to the control and trained groups.</p> <p>Conclusion</p> <p>In conclusion, we have shown that increases in pro-inflammatory cytokines in the adipose tissue after an overtraining protocol may be mediated via TLR-4 and NF-kBp65 signalling, leading to an inflammatory state in this tissue.</p

    Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

    Get PDF
    Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes

    Big Earth Data for Cultural Heritage in the Copernicus Era

    Get PDF
    Digital data is stepping in its golden age characterized by an increasing growth of both classical and emerging big earth data along with trans- and multidisciplinary methodological approaches and services addressed to the study, preservation and sustainable exploitation of cultural heritage (CH). The availability of new digital technologies has opened new possibilities, unthinkable only a few years ago for cultural heritage. The currently available digital data, tools and services with particular reference to Copernicus initiatives make possible to characterize and understand the state of conservation of CH for preventive restoration and opened up a frontier of possibilities for the discovery of archaeological sites from above and also for supporting their excavation, monitoring and preservation. The different areas of intervention require the availability and integration of rigorous information from different sources for improving knowledge and interpretation, risk assessment and management in order to make more successful all the actions oriented to the preservation of cultural properties. One of the biggest challenges is to fully involve the citizen also from an emotional point of view connecting “pixels with people” and “bridging” remote sensing and social sensing

    Accidental Jorge Lobo's disease in a worker dealing with Lacazia loboi infected mice: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Jorge Lobo's disease (Lacaziosis) is a subcutaneous infection of humans living in the Amazon region of Latin America, and in dolphins inhabiting the east coastal areas of the United States. The disease mainly affects people from rural areas living or working in close contact with vegetation and aquatic environments. Most patients refer having developed lesions after accidental trauma with plant thorns or insect bites. Inter-human transmission has never been confirmed suggesting that <it>Lacazia loboi </it>is acquired from environmental propagules.</p> <p>Case presentation</p> <p>We report the case of a 41-year-old woman from São Paulo, Brazil, a non-endemic area of Jorge Lobo's disease, with <it>L. loboi </it>skin infection most likely accidentally acquired while manipulating experimentally infected mice in the laboratory.</p> <p>Conclusion</p> <p>Because many patients with Jorge Lobo's disease do not recall accidental skin trauma before their infections, the possibility of accidentally acquired Jorge Lobo's disease through unnoticed broken skin should be considered during the clinical investigation of nodular skin diseases in people who have contact with the fungus or who live in endemic areas. This is the second report of animal to human transmission of this disease.</p
    corecore