20,205 research outputs found

    Interaction effects on galaxy pairs with Gemini/GMOS- II: Oxygen abundance gradients

    Get PDF
    In this paper we derived oxygen abundance gradients from HII regions located in eleven galaxies in eight systems of close pairs. Long-slit spectra in the range 4400-7300A were obtained with the Gemini Multi-Object Spec- trograph at Gemini South (GMOS). Spatial profiles of oxygen abundance in the gaseous phase along galaxy disks were obtained using calibrations based on strong emission-lines (N2 and O3N2). We found oxygen gradients signifi- cantly flatter for all the studied galaxies than those in typical isolated spiral galaxies. Four objects in our sample, AM1219A, AM1256B, AM 2030A and AM2030B, show a clear break in the oxygen abundance at galactocentric radius R/R25 between 0.2 and 0.5. For AM1219A and AM1256B we found negative slopes for the inner gradients, and for AM2030B we found a positive one. In all these three cases they show a flatter behaviour to the outskirts of the galaxies. For AM2030A, we found a positive-slope outer gradient while the inner one is almost compatible with a flat behaviour. A decrease of star forma- tion efficiency in the zone that corresponds to the oxygen abundance gradient break for AM1219A and AM2030B was found. For the former, a minimum in the estimated metallicities was found very close to the break zone that could be associated with a corotation radius. On the other hand, AM1256B and AM2030A, present a SFR maximum but not an extreme oxygen abundance value. All the four interacting systems that show oxygen gradient breakes the extreme SFR values are located very close to break zones. Hii regions lo- cated in close pairs of galaxies follow the same relation between the ionization parameter and the oxygen abundance as those regions in isolated galaxies.Comment: 30 pages, 14 figures, accepted MNRAS, (Figs. 1 and 2 are in low resolution

    Lactoferrin's anti-cancer properties. Safety, selectivity, and wide range of action

    Get PDF
    Despite recent advances in cancer therapy, current treatments, including radiotherapy, chemotherapy, and immunotherapy, although beneficial, present attendant side effects and long-term sequelae, usually more or less affecting quality of life of the patients. Indeed, except for most of the immunotherapeutic agents, the complete lack of selectivity between normal and cancer cells for radio- and chemotherapy can make them potential antagonists of the host anti-cancer self-defense over time. Recently, the use of nutraceuticals as natural compounds corroborating anti-cancer standard therapy is emerging as a promising tool for their relative abundance, bioavailability, safety, low-cost effectiveness, and immuno-compatibility with the host. In this review, we outlined the anti-cancer properties of Lactoferrin (Lf), an iron-binding glycoprotein of the innate immune defense. Lf shows high bioavailability after oral administration, high selectivity toward cancer cells, and a wide range of molecular targets controlling tumor proliferation, survival, migration, invasion, and metastasization. Of note, Lf is able to promote or inhibit cell proliferation and migration depending on whether it acts upon normal or cancerous cells, respectively. Importantly, Lf administration is highly tolerated and does not present significant adverse effects. Moreover, Lf can prevent development or inhibit cancer growth by boosting adaptive immune response. Finally, Lf was recently found to be an ideal carrier for chemotherapeutics, even for the treatment of brain tumors due to its ability to cross the blood-brain barrier, thus globally appearing as a promising tool for cancer prevention and treatment, especially in combination therapies

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    Growth of a sinkhole in a seismic zone of the northern Apennines (Italy)

    Get PDF
    Sinkhole collapse is a major hazard causing substantial social and economic losses. However, the surface deformations and sinkhole evolution are rarely recorded, as these sites are known mainly after a collapse, making the assessment of sinkhole-related hazard challenging. Furthermore, more than 40% of the sinkholes of Italy are in seismically hazardous zones; it remains unclear whether seismicity may trigger sinkhole collapse. Here we use a multidisciplinary data set of InSAR, surface mapping and historical records of sinkhole activity to show that the Prà di Lama lake is a long-lived sinkhole that was formed in an active fault zone and grew through several events of unrest characterized by episodic subsidence and lake-level changes. Moreover, InSAR shows that continuous aseismic subsidence at rates of up to 7.1mmyr-1occurred during 2003-2008, between events of unrest. Earthquakes on the major faults near the sinkhole do not trigger sinkhole activity but low-magnitude earthquakes at 4-12 km depth occurred during sinkhole unrest in 1996 and 2016. We interpret our observations as evidence of seismic creep at depth causing fracturing and ultimately leading to the formation and growth of the Prà di Lama sinkhole

    Resonant electron heating and molecular phonon cooling in single C60_{60} junctions

    Full text link
    We study heating and heat dissipation of a single \c60 molecule in the junction of a scanning tunneling microscope (STM) by measuring the electron current required to thermally decompose the fullerene cage. The power for decomposition varies with electron energy and reflects the molecular resonance structure. When the STM tip contacts the fullerene the molecule can sustain much larger currents. Transport simulations explain these effects by molecular heating due to resonant electron-phonon coupling and molecular cooling by vibrational decay into the tip upon contact formation.Comment: Accepted in Phys. Rev. Let

    Homodyne estimation of Gaussian quantum discord

    Get PDF
    We address the experimental estimation of Gaussian quantum discord for two-mode squeezed thermal state, and demonstrate a measurement scheme based on a pair of homodyne detectors assisted by Bayesian analysis which provides nearly optimal estimation for small value of discord. Besides, though homodyne detection is not optimal for Gaussian discord, the noise ratio to the ultimate quantum limit, as dictacted by the quantum Cramer-Rao bound, is limited to about 10 dB.Comment: 5+3 pages, 3 figures, published versio

    A self-consistent test of Comptonization models using a long BeppoSAX observation of NGC 5548

    Get PDF
    We test accurate models of Comptonization spectra over the high quality data of the BeppoSAX long look at NGC 5548. The data are well represented by a plane parallel corona with an inclination angle of 30∘^{\circ}, a soft photon temperature of 5 eV and a hot plasma temperature and optical depth of kTe≃kT_{\rm e}\simeq 360 keV and τ≃\tau\simeq 0.1, respectively. If energy balance applies, such values suggest that a more ``photon-starved'' geometry (e.g. a hemispheric region) is necessary. The spectral softening detected during a flare, appears to be associated to a decrease of the heating-to-cooling ratio, indicating a geometric and/or energetic modification of the disk plus corona system. The hot plasma temperature derived with the models above is significantly higher than that obtained fitting the same data with a power law plus high energy cut off model for the continuum. This is due to the fact that in anisotropic geometries Comptonization spectra show "intrinsic" curvature which moves the fitted high energy cut-off to higher energies.Comment: 4 pages, 2 figures, to appear in the proceedings of the conference "X-ray Astronomy '99", Bologna, Italy, September 199
    • …
    corecore