6 research outputs found

    The Accelerating Jet of 3C 279

    Get PDF
    Analysis of the proper motions of the sub-parsec scale jet of the quasar 3C 279 at 15 GHz with the VLBA shows significant accelerations in four of nine superluminal features. Analysis of these motions is combined with the analysis of flux density light curves to constrain values of Lorentz factor and viewing angle (and their derivatives) for each component. The data for each of these components is consistent with significant changes to the Lorentz factor, viewing angle and azimuthal angle, suggesting jet bending with changes in speed. We see that for these observed components Lorentz factors are in the range Γ = 10−41, viewing angles are in the range ϑ = 0.1◦ −5.0◦ , and intrinsic (source frame) flux density is in the range, Fν , int = 1.5×10−9−1.5×10−5 Jy. Considering individual components, the Lorentz factors vary from Γ = 11 − 16 for C1, Γ = 31 − 41 for C5, Γ = 29 − 41 for C6 and Γ = 9 − 12 for C8, indicating that there is no single underlying flow speed to the jet and likely we are seeing pattern speeds from shocks in the jet. The viewing angles vary in time from 0.6◦ to 1.5◦ in the case of C1 (the least extreme example), vary from 0.5◦ to 5.0◦ in the case of C8 and vary from 0.1◦ to 0.9◦ for C5 (the last two being the most extreme examples). The intrinsic flux density varies by factors from 1.4 for C8 and 430 for C5. Theoretical analysis of the accelerations also indicates potential jet bending. In addition, for one component, C5, polarization measurements also set limits to the trajectory of the jet

    Catching the radio flare in CTA 102. II. VLBI kinematic analysis

    Get PDF
    Context. Very Long Baseline Interferometry (VLBI) observations can resolve the radio structure of Active Galactic Nuclei (AGN) and provide estimates of the structural and kinematic characteristics at parsec-scales in their jets. The changes in the kinematics of the observed jet features can be used to study the physical conditions in the innermost regions of these sources. We performed multi-frequency multi-epoch Very Long Baseline Array (VLBA) observations of the blazar CTA102 during its 2006 radio flare, the strongest ever reported for this source. These observations provide an excellent opportunity to investigate the evolution of the physical properties of blazars, especially during these flaring events Aims. We want to study the kinematic changes in the source during the strong radio outburst in April 2006 and test the assumption of a shock-shock interaction. This assumption is based on the analysis and modeling of the single dish observations of CTA102 (Paper I). Methods. In this paper we study the kinematics of CTA102 at several frequencies using VLBI observations. From the modeled jet features we derive estimates on the evolution of the physical parameters, such as the particle density and the magnetic field. Furthermore, we combine our observations during the 2006 flare with long-term VLBA monitoring of the source at 15 GHz and 43 GHz. Results. We cross-identified seven features throughout our entire multifrequency observations and find evidence of two possible recollimation shocks around 0.1   mas (deprojected 18 pc at a viewing angle ϑ = 2.6°) and 6.0   mas (deprojected 1 kpc) from the core. The 43   GHz observations reveal a feature ejected at epoch tej = 2005.9 ± 0.2, which could be connected to the 2006 April radio flare. Furthermore, this feature might be associated with the traveling component involved in the possible shock-shock interaction, which gives rise to the observed double peak structure in the single-dish light curves reported in Paper I

    VLBA Observations of a Rare Multiple Quasar Imaging Event Caused by Refraction in the Interstellar Medium

    Get PDF
    Aims. We have investigated highly atypical morphological parsec-scale changes in the flat spectrum extragalactic radio source 2023+335 which are coincident with an extreme scattering event (ESE) seen at radio wavelengths during the first half of 2009. Methods. We used (i) 15.4 GHz Very Long Baseline Array (VLBA) observations of the quasar 2023+335 obtained at 14 epochs between July 2008 and Nov. 2012 as part of the Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) program; (ii) earlier archival VLBA observations of the source performed at 1.4, 2, 8, 15, 22, and 86 GHz to analyze the properties of the proposed turbulent screen toward 2023 + 335; and (iii) data sets from the Owens Valley Radio Observatory (OVRO) and University of Michigan Radio Astronomy Observatory (UMRAO) single-dish monitoring programs performed at 15 and 14.5 GHz, respectively, to study integrated flux density changes. Results. We report on the first detection of the theoretically-predicted rare phenomenon of multiple parsec-scale imaging of an active galactic nucleus induced by refractive effects due to localized foreground electron density enhancements, e.g., in an AU-scale plasma lens(es) in the ionized component of the Galactic interstellar medium. We detected multiple imaging in the low galactic latitude (b = -2.°4$) quasar 2023+335 from the 15.4 GHz MOJAVE observations when the source was undergoing an ESE. While the parsec-scale jet of the source normally extends along PA ~ −20°, in the 28 May 2009 and 23 July 2009 images a highly significant multi-component pattern of secondary images is stretched out nearly along the constant galactic latitude line with a local PA ≈ 40°, indicating that the direction of relative motion of the plasma lens is close to orbital. Weaker but still detectable imaging patterns at similar position angles are sporadically manifest at several other epochs. Modeling the ESE that occurred in early 2009 and lasted ~0.14 yr, we determined that the foreground screen has a double-lens structure, with proper motion (~6.8 mas yr-1), and angular size (~0.27 mas). We also found that the angular separation between the two brightest sub-images roughly follows a wavelength-squared dependence expected from plasma scattering. Furthermore, by analyzing archival non-simultaneous VLBA observations covering a wide frequency range from 1.4 to 86 GHz, we found that the scattered angular size of the VLBI core follows a ν-1.89 dependence, implying the presence of a turbulent, refractive dominated scattering screen that has a confined structure or is truncated transverse to the line of sight toward 2023+335

    Constraints on the Progenitor System and the Environs of SN 2014J from Deep Radio Observations

    Get PDF
    We report deep EVN and eMERLIN observations of the Type Ia SN 2014J in the nearby galaxy M82. Our observations represent, together with JVLA observations of SNe 2011fe and 2014J, the most sensitive radio studies of Type Ia SNe ever. By combining data and a proper modeling of the radio emission, we constrain the mass-loss rate from the progenitor system of SN 2014J to M˙7.0×1010Myr1\dot{M} \lesssim 7.0\times 10^{-10} {\,{M_{\odot } \,\rm yr^{-1}}} (for a wind speed of 100 km s-1). If the medium around the supernova is uniform, then n ISM lesssim 1.3 cm-3, which is the most stringent limit for the (uniform) density around a Type Ia SN. Our deep upper limits favor a double-degenerate (DD) scenario involving two WD stars for the progenitor system of SN 2014J, as such systems have less circumstellar gas than our upper limits. By contrast, most single-degenerate (SD) scenarios, i.e., the wide family of progenitor systems where a red giant, main-sequence, or sub-giant star donates mass to an exploding WD, are ruled out by our observations. (While completing our work, we noticed that a paper by Margutti et al. was submitted to The Astrophysical Journal. From a non-detection of X-ray emission from SN 2014J, the authors obtain limits of M˙1.2×109\dot{M} \lesssim 1.2 \times 10^{-9} M ☉ yr-1 (for a wind speed of 100 km s-1) and n ISM lesssim 3.5 cm-3, for the ρ∝r -2 wind and constant density cases, respectively. As these limits are less constraining than ours, the findings by Margutti et al. do not alter our conclusions. The X-ray results are, however, important to rule out free-free and synchrotron self-absorption as a reason for the radio non-detections.) Our estimates on the limits on the gas density surrounding SN2011fe, using the flux density limits from Chomiuk et al., agree well with their results. Although we discuss the possibilities of an SD scenario passing observational tests, as well as uncertainties in the modeling of the radio emission, the evidence from SNe 2011fe and 2014J points in the direction of a DD scenario for both

    TANAMI monitoring of Centaurus A: The complex dynamics in the inner parsec of an extragalactic jet

    Get PDF
    Context. Centaurus A (Cen A) is the closest radio-loud active galactic nucleus. Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet¿counterjet system on milliarcsecond scales, providing essential information for jet emission and propagation models. Aims. In the framework of the TANAMI monitoring, we investigate the kinematics and complex structure of Cen A on subparsec scales. We have been studying the evolution of the central parsec jet structure of Cen A for over 3.5 years. The proper motion analysis of individual jet components allows us to constrain jet formation and propagation and to test the proposed correlation of increased high-energy flux with jet ejection events. Cen A is an exceptional laboratory for such a detailed study because its proximity translates to unrivaled linear resolution, where one milliarcsecond corresponds to 0.018 pc. Methods. As a target of the southern-hemisphere VLBI monitoring program TANAMI, observations of Cen A are done approximately every six months at 8.4 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, New Zealand, and South Africa, complemented by quasi-simultaneous 22.3 GHz observations. Results. The first seven epochs of high-resolution TANAMI VLBI observations at 8.4 GHz of Cen A are presented, resolving the jet on (sub-)milliarcsecond scales. They show a differential motion of the subparsec scale jet with significantly higher component speeds farther downstream where the jet becomes optically thin. We determined apparent component speeds within a range of 0.1c to 0.3c and identified long-term stable features. In combination with the jet-to-counterjet ratio, we can constrain the angle to the line of sight to theta approx 12deg-45deg. Conclusions. The high-resolution kinematics are best explained by a spine-sheath structure supported by the downstream acceleration occurring where the jet becomes optically thin. On top of the underlying, continuous flow, TANAMI observations clearly resolve individual jet features. The flow appears to be interrupted by an obstacle causing a local decrease in surface brightness and circumfluent jet behavior. We propose a jet-star interaction scenario to explain this appearance. The comparison of jet ejection times to high X-ray flux phases yields a partial overlap of the onset of the X-ray emission and increasing jet activity, but the limited data do not support a robust correlation

    Future mmVLBI Research with ALMA: a European vision

    Get PDF
    Very long baseline interferometry at millimetre/submillimetre wavelengths (mmVLBI) offers the highest achievable spatial resolution at any wavelength in astronomy. The anticipated inclusion of ALMA as a phased array into a global VLBI network will bring unprecedented sensitivity and a transformational leap in capabilities for mmVLBI. Building on years of pioneering efforts in the US and Europe the ongoing ALMA Phasing Project (APP), a US-led international collaboration with MPIfR-led European contributions, is expected to deliver a beamformer and VLBI capability to ALMA by the end of 2014 (APP: Fish et al. 2013, arXiv:1309.3519). This report focuses on the future use of mmVLBI by the international users community from a European viewpoint. Firstly, it highlights the intense science interest in Europe in future mmVLBI observations as compiled from the responses to a general call to the European community for future research projects. A wide range of research is presented that includes, amongst others: - Imaging the event horizon of the black hole at the centre of the Galaxy - Testing the theory of General Relativity an/or searching for alternative theories - Studying the origin of AGN jets and jet formation - Cosmological evolution of galaxies and BHs, AGN feedback - Masers in the Milky Way (in stars and star-forming regions) - Extragalactic emission lines and astro-chemistry - Redshifted absorption lines in distant galaxies and study of the ISM and circumnuclear gas - Pulsars, neutron stars, X-ray binaries - Testing cosmology - Testing fundamental physical constant
    corecore