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ABSTRACT

Analysis of the proper motions of the subparsec scale jet of the quasar 3C 279 at 15 GHz with the Very Long
Baseline Array shows significant accelerations in four of nine superluminal features. Analysis of these motions is
combined with the analysis of flux density light curves to constrain values of Lorentz factor and viewing angle
(and their derivatives) for each component. The data for each of these components are consistent with significant
changes to the Lorentz factor, viewing angle, and azimuthal angle, suggesting jet bending with changes in speed.
We see that for these observed components Lorentz factors are in the range Γ = 10–41, viewing angles are in the
range ϑ = 0.◦1–5.◦0, and intrinsic (source frame) flux density is in the range, Fν, int = 1.5 × 10−9–1.5 × 10−5 Jy.
Considering individual components, the Lorentz factors vary from Γ = 11–16 for C1, Γ = 31–41 for C5, Γ = 29–41
for C6, and Γ = 9–12 for C8, indicating that there is no single underlying flow speed to the jet and likely we are
seeing pattern speeds from shocks in the jet. The viewing angles vary in time from 0.◦6 to 1.◦5 in the case of C1
(the least extreme example), from 0.◦5 to 5.◦0 in the case of C8, and from 0.◦1 to 0.◦9 for C5 (the last two being the
most extreme examples). The intrinsic flux density varies by factors from 1.4 for C8 and 430 for C5. Theoretical
analysis of the accelerations also indicates potential jet bending. In addition, for one component, C5, polarization
measurements also set limits to the trajectory of the jet.
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1. INTRODUCTION

Historically, there has been great interest in the study of
quasar 3C 279. It is one of the brightest extragalactic radio
sources and the first to have observed superluminal motion
(Cohen et al. 1971; Whitney et al. 1971). In addition, 3C 279
undergoes dramatic optical flares on a regular basis, and was the
first gamma-ray blazar discovered by the EGRET instrument
on board the Compton Gamma Ray Observatory (Hartman
et al. 1999). More recently, 3C 279 has also been continuously
detected by the Large Area Telescope (LAT) instrument on the
Fermi Observatory (Abdo et al. 2010). All these phenomena
are thought to be related to the quasar’s relativistic jet and
its emission properties. Increasingly, the very long baseline
interferometry (VLBI) technique, particularly since the advent
of the Very Long Baseline Array (VLBA) in 1994, has been
able to probe these jets on milliarcsecond scales at high
resolution. One of the main goals has been to tightly constrain
the kinematic properties of the jets, such as viewing angle (ϑ),
speed (β = v/c), Lorentz factor (Γ), and relativistic Doppler
beaming factor (δ).

Detailed analysis of 3C 279’s milliarcsecond scale radio
jet has been conducted by Homan et al. (2003) at 15 GHz
who note a bent path for the outermost feature labeled as C4
(currently labeled as C1 in Lister et al. 2009b), leading from
parsec to kiloparsec scales. Wehrle et al. (2001), using data
at 22 GHz and 43 GHz, reported a curved trajectory for C4
during 1991–1997. They use these data to constrain the viewing
angle to 2◦. Jorstad et al. (2004) confirm the C4 bending from
43 GHz monitoring observations. Our present work uses the
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MOJAVE data set for quasar 3C 279 from epoch 1995.57 to
2010.82 (Lister et al. 2009a). For the remainder of this paper we
use the component naming conventions of Lister et al. (2009b).
To aid in visualizing these components, we include a labeled
15 GHz map from 2003 (Figure 1). In the remaining sections,
we use the analysis techniques of Homan et al. (2001, 2003) to
determine the trajectory of each of the superluminal components
previously determined to exhibit significant accelerations (Lister
et al. 2009b). We have adopted the cosmology Ωm = 0.3,
ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1. In Section 2, we
discuss the nature of our data set; in Section 3, we present the
analysis of these data, focusing on the constraints on kinematics
provided by the accelerations, flux densities, and additional data;
in Section 4, we discuss the broader physical relevance of this
analysis; and in Section 5, we present our conclusions.

2. DATA

3C 279 has been regularly observed with the VLBA at 15 GHz
as part of the MOJAVE Survey (Lister et al. 2009a), and prior
to that, as part of the 2 cm Survey (Kellermann et al. 1998)
since 1993. Details of the observing program can be found in
Lister et al. (2009a). In addition, these data were supplemented
with many epochs of data available in the VLBA archives from
this period. The data were first edited and calibrated using AIPS
(Bridle & Greisen 1994). Caltech’s DIFMAP package was then
used for self-calibration, mapping, and modeling (Shepherd
1997). The detailed modeling results are presented in Lister et al.
(2009b). Here, as in the aforementioned work, we have assumed
components to be circular Gaussians. As stated in Lister et al.
(2009b), there is about a 5% uncertainty in the flux densities. The
positional uncertainties will be approximately 0.2 mas. Thus,
in most cases, our components’ positional uncertainty will be
less than or close to 10%. As previously mentioned, we have
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Figure 1. 15 GHz VLBA contour map of 3C 279 at epoch 2003.46 (June 15).
This image is fitted with circular Gaussian components modeling the bright
features. The map peak flux density was 8.3 Jy beam−1, where the convolving
beam was 1.3 × 0.5 mas at position angle (P. A.) of −6.◦0. The contour levels
were drawn at 0.2%, 0.5%, 1%, 2%, 4%, 8%, 16%, 32%, 64%, and 80% of the
peak flux density. The bright components are labeled. The Gaussian components
are overlaid on the map.

(A color version of this figure is available in the online journal.)

limited ourselves to studying the components that have exhibited
significant accelerations (Lister et al. 2009b); however, we have
recalculated the accelerations of these components based on the
most recent data (see Table 3).

3. ANALYSIS

3.1. Using Proper Motion and Flux Density
to Constrain Kinematic Parameters

We begin the analysis by calculating the values of the apparent
speed, βapp (see Equation (1)), from the proper motion, μ. The
proper motion, μ, is the slope of the linear regression to the
component distance from the core versus time, as seen in Figures
2–5. We can clearly see that some of these fits will be closer
to linear (such as C8) whereas a component such as C5 shows
very complex changes and C6 shows movement from core that
clearly implies rapidly increasing apparent speed. As a first
approximation, we use just the linear fit for now and apply the
standard formulae:

βapp = 47.4dθμ(1 + z), (1)

where dθ is the angular size distance in Mpc and z is the cosmic
redshift. A derivation of Equation (1) can be found in Pearson
& Zensus (1987) and Porcas (1987).

We then use βapp (see Equations (2) and (3)) to constrain the
Lorentz factor, Γ, and the viewing angle, ϑ . Here, the viewing
angle refers to the angle between the direction of motion of
the relevant component and the line of sight to the observer, as

measured from the observer’s frame:

βapp = β sin ϑ

1 − β cos ϑ
, (2)

Γ = 1√
1 − β2

, (3)

where β refers to the speed, v, divided by the speed of light, c.
Then, using Equations (4) and (5), we can best determine

which range of values of the intrinsic flux density, Fν, int, and
the relativistic Doppler beaming factor, δ, best fit the observed
flux densities (Figures 6–9), Fν, obs, at a given time:

δ = 1

Γ(1 − β cos ϑ)
, (4)

Fν, obs = Fν, intδ
3+α. (5)

Here, α refers to the spectral index assuming Fν ∝ ν−α .
We have assumed α = 0.8, which is commonly the case, at
least approximately, for blazar components that have long ago
merged with the core. We note that the kinematics are not at
all dependent on this assumption, and the results concerning
level and variability of flux density are dependent on this in a
predictable way (by inverting Equation (5)). Furthermore, we
can see that the general results concerning variability and how
that ties in to the kinematics are not highly dependent on spectral
index. Here, if we take the ratio of two flux densities from two
different times (labeled with subscripts 1 and 2), then

Fν, int 2

Fν, int 1
= Fν, obs 2

Fν,obs 1

(
δ2

δ1

)−(α+3)

. (6)

If we assume that δ2/δ1 is no larger than about 1.65 (the
maximum in our set of observations of all of these components),
and we assume liberally that α can be in the range of −1 to 1,
then, after substituting into Equation (6), the range of intrinsic
flux ratios that we calculate can differ by a factor of about 2.7.
Therefore, for a typical case, it is unlikely that our results will be
critically dependent on assumptions regarding spectral index.

We note that all components show a decreasing observed
flux density, which is consistent with the general trend of the
bright components having moved far from the core and generally
dimmed with time. However, for some components, such as C5,
this is clearly not simply monotonic (Figure 7).

3.2. Fitting the Data

Our overall strategy is to fit the proper motion and flux
density data by assuming a time dependence for the viewing
angle and intrinsic flux density over defined time intervals. The
time intervals are chosen to be those that best fit the radial
distance versus time curve (Figures 2–5) for each component.
As a starting point, following Pearson & Zensus (1987), we see
that for a given βapp there are a set of values of Γ and ϑ that can
satisfy the equations above, and that we can solve for a minimum
value of Γ and the maximum value for ϑ (as Γ → ∞):

Γmin =
√

1 + βapp
2, (7)

tan(ϑmax/2) = 1

βapp
. (8)
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Figure 2. C1 component observed radial distance from core vs. time. The dotted line represents a model for which Lorentz factor, viewing angle, and intrinsic flux
density are allowed to vary. The vertical dashed lines show the time intervals used in the modeling. There is a noticeable change in speed around 1998.
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Figure 3. C5 component observed radial distance from core vs. time. The dotted line represents a model for which Lorentz factor, viewing angle, and intrinsic flux
density are allowed to vary. The dashed vertical lines show the time intervals used in the modeling. Clearly this component is undergoing complex motion (rapid
increases and decreases in apparent speed), especially visible from 2002.5 to 2005.

Kellermann & Owen (1988) aid in visualizing these results
by plotting βapp versus ϑ for a set of different values of Γ.

We thus begin with these values from Equations (7) and (8),
and search parameter space until χ2 is minimized (discussed
below). The same time intervals are then used for the remainder
of the fits (described below) for each component. For simplicity,
we have chosen a linear dependence with time (in each interval)
for each of these parameters. The results of these fits are given
in Table 1.

In this table, Column 1 refers to the component being
considered. The parameters of the tested models are the bulk
Lorentz factor, Γ, viewing angle, ϑ , and the intrinsic flux density
(Fν,int). Columns 2 and 3 give the start and end times of the
fitted intervals. Columns 4 and 5 give the starting and ending
bulk Lorentz factors. Columns 6 and 7 give the starting and
ending viewing angles. Columns 8 and 9 give the beginning and
ending Doppler factors using Equation (4). Columns 10 and 11
give the beginning and ending intrinsic flux density values. The
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Figure 4. C6 component observed radial distance from core vs. time. The dotted line represents a model for which Lorentz factor, viewing angle, and intrinsic flux
density are allowed to vary. The dashed vertical lines show the time intervals used in the modeling. The rapid increase in apparent speed goes from 5c to 40c.
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Figure 5. C8 component observed radial distance from core vs. time. The dotted line represents a model for which Lorentz factor, viewing angle, and intrinsic flux
density are allowed to vary. The dashed vertical lines show the time intervals used in the modeling. This component increases its apparent speed from 1.4c to 12c

results of our χ2 analysis of these models are given in Table 2.
Column 1 refers to the component being considered and Column
2 refers to the time-dependent quantity that is being fitted. The
explanation and calculation of χ2 in Column 3 can be found
in Chapter 13 of Press et al. (1986). The probability given in
Column 4 is such that the model could lead to a χ2 value as
poor as that calculated by chance. Generally speaking, very low
probability values (<1 × 10−3) would indicate a poor fit. If the

probability is given as 0, it is less than the lowest value that
can be calculated by our χ2 routine. The number of degrees of
freedom (dof) given in Column 5, as defined in Chapter 13 of
Press et al. (1986), is also given in Table 2.

3.3. Theoretical Background

Though we leave the magnitude of intrinsic flux density as
a free parameter in our model above, we can get a sense of
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Table 1
Model Parameters

Component Start Time, t1 End Time, t2 Γ1 Γ2 ϑt1 ϑt2 δt1 δt2 Ft1 Ft2

(rad) (rad) (Jy) (Jy)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

C1 1995.57 1998.2 15.82 12.92 0.019 0.026 29.0 23.2 4.2 × 10−6 1.2 × 10−5

1998.2 2002.0 12.92 15.82 0.026 0.027 23.2 26.7 1.2 × 10−5 2.6 × 10−6

2002.0 2008.75 15.82 15.82 0.027 0.025 26.7 27.3 2.6 × 10−6 1.5 × 10−7

2008.75 2010.82 15.82 11.19 0.025 0.010 27.3.1 22.1 1.5 × 10−7 1.3 × 10−6

C5 1998.18 2000.5 35.36 35.36 0.005 0.006 68.6 67.7 6.5 × 10−7 3.0 × 10−7

2000.5 2002.0 35.36 35.36 0.006 0.004 67.7 69.3 3.0 × 10−7 1.8 × 10−7

2002.0 2002.5 35.36 40.83 0.004 0.015 69.3 59.4 1.8 × 10−7 2.0 × 10−7

2002.5 2003.75 40.83 31.63 0.015 0.009 59.4 58.5 2.0 × 10−7 1.7 × 10−7

2003.75 2005.5 31.63 31.63 0.009 0.003 58.5 62.7 1.7 × 10−7 1.5 × 10−7

2005.5 2009.6 31.63 35.36 0.003 0.008 62.7 65.5 1.5 × 10−7 5.9 × 10−8

2009.6 2010.0 35.36 35.36 0.008 0.001 65.5 70.6 5.9 × 10−8 1.5 × 10−9

2010.0 2010.82 35.36 31.63 0.001 0.001 70.6 63.2 1.5 × 10−9 4.5 × 10−8

C6 2000.04 2000.6 28.87 31.63 0.003 0.003 57.3 62.7 5.3 × 10−7 3.9 × 10−7

2000.6 2002.0 31.63 31.63 0.003 0.003 62.7 62.7 3.9 × 10−7 4.7 × 10−7

2002.0 2003.0 31.63 35.36 0.003 0.019 62.7 48.7 4.7 × 10−7 3.8 × 10−7

2003.0 2003.89 35.36 40.83 0.019 0.019 48.7 50.98 3.8 × 10−7 2.0 × 10−7

C8 2003.45 2005.4 9.55 11.96 0.008 0.088 18.9 11.4 1.5 × 10−5 1.1 × 10−5

Table 2
χ2 Analysis

Component Parameter χ2 Probability dof
(1) (2) (3) (4) (5)

C1 Flux 2442 0.0 107
βapp 3.83 1.0 102

C5 Flux 932 0.0 85
βapp 34 0.99 76

C6 Flux 697 0.0 41
βapp 12.05 0.99 36

C8 Flux 255 0.0 14
βapp 5.749 0.93 12

whether or not our model results are realistic or at least partly
explained if we consider a model such as the shocked jet model
of Marscher & Gear (1985). We first consider that the intrinsic
flux density of a homogeneous source is proportional to the
electron energy normalization factor, K, and the magnetic field,
B, in the following way:

Fν,int ∝ KB(1+p)/2R3, (9)

where the relativistic electron energy distribution is defined by

N (E) = KE−p (10)

and R is the radius of the jet.
In Marscher & Gear (1985), broadband flux variations are

modeled by a shock passing through a relativistic jet. If we
assume a plasma of relativistic electrons and subrelativistic
protons with adiabatic index of 13/9 and if the compression ratio
of the shock (in the strong shock limit) can be approximated as

η � 13Γ′ + 9

4
, (11)

then the energy normalization factor can be enhanced by a factor
of ηξp−1, where ξ is a constant factor by which the electron
energies are enhanced. For the purposes of order-of-magnitude

analysis, we can, as Marscher & Gear (1985) discuss, assume
that ξ has a lower limit related to the compression ratio of η1/3.
Similar considerations lead to a magnetic field enhancement
of approximately (η2 + 1/2)1/2. We note that Γ′ is the bulk
Lorentz factor of the shocked medium as viewed from the un-
shocked medium and can be assumed to have a value between
approximately 1 and 2 (Marscher & Gear 1985).

However, we also need to take into consideration the radial
decrease of electron density and magnetic field as the shock
progresses down the jet. First, we can assume that these
quantities decrease following a power law

K(r) = K0(r/r0)−n, (12)

and assuming that the jet flow is adiabatic (Marscher & Gear
1985), then

n = 2(p + 2)

3
, (13)

and also
B(r) = B0(r/r0)−b, (14)

and
R = arε, (15)

where, as before, R refers to the radius of the jet, r refers to the
distance down the jet from the apex, and r0 is a reference point
some radial distance from the apex of the jet, and usually taken
to be physically related to the observed VLBI core. For a conical
jet, ε = 1 and a = tanλ, where λ refers to the jet opening angle.

Combining this with the flux density dependence on the
aforementioned parameters in Equation (9), we can then show
that the optically thin flux density will be proportional to the
radius in the following way:

Fν ∝ (r/r0)κ , (16)

where
κ = ε(−2n + 6 − b(p + 1))/2. (17)

If we assume, as do Marscher & Gear (1985), that the distance
down the jet can be determined observationally based on the
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Figure 6. C1 component observed flux density vs. time. The dotted line represents a model for which Lorentz factor, viewing angle, and intrinsic flux density are
allowed to vary. The dashed vertical line show the time intervals used for the modeling.

observed progression of the component, and inferred velocity
and viewing angle, then we can further use

r ∝ (tobs − tej )βc

(1 − β cos ϑ)(1 + z)
. (18)

Substituting into Equation (16), we get

Fν ∝
[

(tobs − tej)βc

(1 − β cos ϑ)(1 + z)

]κ

, (19)

where tobs refers to the time of observation and tej refers
to the time of ejection of the component from the core.
If we can then compare the expected radial amplification
factor between the two intervals, and then multiply by the
shock amplification factor discussed above, we arrive at a new
combined amplification factor, Af :

Af =
[

13Γ′ + 9

4

](p+2)/3 [
(13Γ′ + 9)2 + 16

32

](p+1)/4)

×
[

(tobs, 2 − tej)

(tobs, 1 − tej)

(1 − β cos ϑ1)

(1 − β cos ϑ2)

]−κ

. (20)

We consider this model in interpreting our results in our
discussion in Section 4 below.

3.4. Summary of Proper Motion and Flux Density
Observations by Component

Here we summarize the details of what is seen for each
component.

C1. In Figure 2, we see that the plot of radial distance from
the core versus time shows a significant transition in 1998 due
to an increase in βapp (the slope of this diagram) from near
8 to as high as 11 in 2003, decreasing again thereafter. The
1998 event has previously been interpreted as due to an impulse
acceleration (Homan et al. 2003) related to a sudden bend in the

jet. In Figure 6, we see that the observed flux density is primarily
decreasing, which we have modeled as being due to a decrease
of intrinsic flux density (Table 1). The relativistic Doppler factor,
δ, is also primarily decreasing over the period of observations
(with some small fluctuations; see Table 1), contributing to the
decrease in observed flux density (Figure 6).

C5. From Figure 3, we can see that this source exhibits very
complex motion, especially between 2002.5 and 2005.5, during
which time we see a sudden increase in apparent speed, βapp,
followed by a decrease. Though proper motion, μ (and thus
βapp), is generally well fitted for all components, C5 clearly has
the poorest fit. These results could indicate a relatively fast-
moving unresolved component that is leading us to misinterpret
the radial distance curve around 2002.5 to 2005.5. The observed
flux density (Figure 7) is decreasing during the range of
observations, primarily due to a decrease in intrinsic flux density.

C6. The visible dramatic change in the motion of this
component (Figure 4) is best explained by both an increase
in Γ from 29 to 41 and an increase in viewing angle from 0.◦2 to
1.◦1, accounting for the change in βapp from 5c in 2002.0 to 40c
in 2003.9. The observed flux density (Figure 8) is decreasing
during this time, which we have modeled as being caused mainly
by a decrease in intrinsic flux density (Table 1).

C8. The increase in slope of the plot in Figure 5 indicates
that this component has gone from an apparent speed of 1.4c
to 12c due to a dramatic change in viewing angle from 0.◦5 to
5.◦0 and an increase in Lorentz factor from Γ = 9 to 12. The
observed flux density (Figure 9) is decreasing steadily during
this same time frame, which we have modeled as being caused
by a decrease in Doppler beaming factor, δ, from approximately
19 down to near 11 (see Table 1), while the intrinsic flux density
remains roughly constant (see Table 1).

3.5. Using Accelerations to Constrain Values
of Kinematic Parameters

We can follow up this analysis by additionally constraining
Lorentz factors and viewing angles with theoretical modeling
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Figure 7. C5 component observed flux density vs. time. The dotted line represents a model for which Lorentz factor, viewing angle, and intrinsic flux density are
allowed to vary. The dashed vertical lines show the time intervals used in the modeling.
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Figure 8. C6 component observed flux density vs. time. The dotted line represents a model for which Lorentz factor, viewing angle, and intrinsic flux density are
allowed to vary. The dashed vertical lines show the time intervals used in the modeling.

of the measured accelerations. After fitting Gaussian circular
models to the (u, v) data using the MODELFIT routine within
DIFMAP we have determined the positions of distinct features
as a function of time. Following Homan et al. (2001), we have
first determined the x and y positions (relative right ascension
and declination, respectively) of each robust modeled compo-
nent, and then used the LFIT fitting routine from Numerical
Recipes (Press et al. 1986) to parameterize the x and y positions
in terms of angular velocity and acceleration in the following

way:

x(t) = μx(t − t0) +
μ̇x

2
(t − tmid)2, (21)

y(t) = μy(t − t0) +
μ̇y

2
(t − tmid)2. (22)

Here, μx and μy refer to the proper motions in the x and
y directions, t0 is the time of component ejection, and tmid is
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Figure 9. C8 component observed flux density vs. time. The dotted line represents a model for which Lorentz factor, viewing angle, and intrinsic flux density are
allowed to vary. The dashed vertical lines show the time intervals used in the modeling.

the midpoint of the time span of the observations of the given
component.

The accelerations can then be transformed to a coordinate
system with components perpendicular and parallel to the radial
motion (if this direction is presumed constant):

μ̇‖ = μ̇xsin φ + μ̇ycos φ, (23)

μ̇⊥ = μ̇xcos φ − μ̇ysin φ. (24)

Here, φ refers to the angle between the velocity vector and
the y-axis.

In this context, the parallel accelerations correspond to either
a speeding up or a slowing down in the radial direction or
a change in the angle to the line of sight (or both), and the
perpendicular accelerations are those that cause bending in the
azimuthal direction (in reference to the line of sight). We caution
readers not to confuse this geometry with the geometry of the
jet itself. A more detailed description, including diagrams, can
be found in Homan et al. (2009).

The uncertainties of the accelerations are calculated in a
manner similar to that of Homan et al. (2001). That is, there
are no initial assumptions regarding the uncertainties of the
input component positions. Rather, the positions that go into the
fit are initially weighted by unity, and then iteratively weighted
by whichever uncertainty values are needed to bring the reduced
χ2 of the fit down to approximately one. Though this method
does not allow us to conclude that the assumed model is the
correct one, the estimated uncertainties are valid if the model
outlined above is the appropriate choice (Lister et al. 2009b).

We can determine the consistency of observed values with
theoretically determined accelerations following the procedure
of Homan et al. (2009). They use the following formulae to
predict parallel and perpendicular accelerations and transform
them into expressions for changes in the proper motion:

dβ‖,obs

dtobs
= β̇sin ϑ + βϑ̇(cos ϑ − β)

(1 − βcos ϑ)3
, (25)

dβ⊥,obs

dtobs
= βϕ̇sin ϑ

(1 − βcos ϑ)2
, (26)

μ̇‖ = μ
dβ‖,obs

dtobs

[
(1 + z)βapp

]−1
, (27)

μ̇⊥ = μ
dβ⊥,obs

dtobs

[
(1 + z)βapp

]−1
. (28)

Here, β is the speed as a fraction of the speed of light, β̇
is the time derivative of β, ϑ is the viewing angle, ϑ̇ is the
time derivative of this angle, and ϕ̇ is the time derivative of
the azimuthal angle relative to an axis along the direction of the
viewing angle. μ̇‖ and μ̇⊥ refer to the parallel and perpendicular
components of acceleration in angular units (mas yr−2), and μ
is the proper motion in mas yr−1.

Understanding these formulae above requires some con-
straints on the time derivatives β̇, ϑ̇ , and ϕ̇. These cannot be
directly observed but further constraints can be put on these val-
ues by examining the proper motion diagrams (Figures 2–5) and
light curves (Figures 6–9), as we discussed above. To aid in the
interpretation of the results we note that a non-zero perpendic-
ular acceleration only corresponds to a bend of the component
direction in the azimuthal direction, with respect to the radial
velocity vector. There are no consequences for the bulk speed.
Interpreting the parallel acceleration is more complex. In the
limiting case for which β̇ = 0 (no changes in bulk speed), an
increase in apparent parallel velocity can still occur if ϑ̇ > 0
and β < cos ϑ or when ϑ̇ < 0 and β > cos ϑ . For the limiting
case of ϑ̇ = 0, an increase in apparent velocity can still occur
for β̇ > 0. For the case of decreasing apparent velocity, the
same relationships hold with a simple reversal of the inequality
sign above for ϑ̇ .

Using Equations (27) and (28) above, we determine that
the predicted theoretical acceleration over the entire interval
of observations is approximately equal to those observed if
the values of the parameters in Equations (25) and (26) equal

8
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Table 3
Acceleration Model Parameters

Component μ̇‖ σ‖ μ̇⊥ σ⊥ t1 t2 β β̇ ϑ ϑ̇ ϕ̇

(mas yr−1) (mas yr−1) (mas yr−1) (mas yr−1) (yr−1) (rad yr−1) (rad yr−1)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

C1 0.0004 0.0037 0.0130 0.0037 1995.57 2010.46 0.998 2.0 ×10−8 0.019 −9.3×10−8 1.6 ×10−4

C5 −0.0189 0.0042 −0.0001 0.0042 1999.37 2010.46 0.9996 −5.0 ×10−9 0.005 −1.0 ×10−7 −1.8 ×10−7

C6 0.2916 0.0290 0.0284 0.0290 2000.04 2003.89 0.9994 9.9 ×10−7 0.003 1.5 ×10−7 1.7 ×10−4

C8 0.1245 0.0755 0.3821 0.0755 2003.45 2005.45 0.9945 5.3 ×10−5 0.008 1.0 ×10−4 6.7×10−2

those presented in Table 3. In Table 3, Column 1 identifies
the component being considered, μ̇‖ in Column 2 and σ‖ in
Column 3 refer to the acceleration of proper motion in the
direction parallel to the proper motion vector and the associated
uncertainty. μ̇⊥ in Column 4 and σ⊥ in Column 5 refer to the
acceleration of proper motion in the direction perpendicular to
the proper motion vector and the associated uncertainty. t1 in
Column 6 and t2 in Column 7 refer to the relevant time interval
of the data being modeled, β in Column 8, β̇ in Column 9, ϑ
in Column 10, ϑ̇ in Column 11, and ϕ̇ in Column 12 have the
same meaning as in Equations (25) and (26) above. ϑ is taken
to be the initial value from Table 1 and β is calculated from Γ
(given in Table 1) using Equation (3).

3.6. Consistency between Two Methods

We can check for some consistency between the methods
in Sections 3.1, 3.2, and 3.5 in the following manner. Using
the results in Section 3.1 (Table 1) we can estimate the overall
change in viewing angle, Δϑ, for each component. We can then
divide by the change in time, Δt , to estimate ϑ̇ determined
in Section 3.3; however, we must correct for the relativistic
motion of the component into the line of sight and divide the
observed time interval by (1+z)(1−β cos ϑ) now to get Δt ′. We
can estimate β̇ in similar manner. There are some caveats. For
instance, both β and ϑ may be changing rapidly over the range of
observations. Therefore, the values used for these quantities in
further calculations are likely only to be rough averages over
the entire time range of our observations. Performing these
estimations leads to mixed results. For instance, for C5, we
estimate Δϑ/Δt ′ to be approximately −2.3 × 10−7 rad yr−1.
As compared to ϑ̇ in Table 3, there is a 130% difference. In
repeating for Δβ/Δt ′, we estimate −5.8 × 10−9. As compared
to β̇ in Table 3, there is a 16% difference. However, this is the
case with the best agreement between these methods. At the
other extreme, for C1, we estimate (Δϑ/Δt ′) = 2.5 × 10−6,
which has a 2600% difference with ϑ̇ in Table 3. Comparison
of (Δβ/Δt ′) = −5.6 × 10−7 with β̇ shows a 2900% difference.
Though the results are mixed, they are promising in that they
can be self-consistently used to make a first estimate of ϑ̇ and
β̇, to be refined by the methods in Section 3.5. Such a method
may also be used to assist in rejecting our simple acceleration
model, for cases such as C5, for which discrepancies are large.

4. DISCUSSION

We see above that there are a number of Lorentz factors
associated with this jet, and that these Lorentz factors are
changing over time. Though these results could potentially be
explained by some variation of an underlying flow speed, an
alternative is that we are seeing pattern speeds due to shocks
moving through the jet. In particular, we see that C1 and C8

have overlapping values of Lorentz factor (in the range of
about 9–16), and to some extent, viewing angles. In contrast,
both C5 and C6 have overlapping Lorentz factor ranges, from
29 to 41. These may all be pattern speeds due to shocks, or
possibly there can be a mixture of jet flow speed and pattern
speed. Furthermore, both methods discussed in Section 3 are
consistent with changing viewing angles for all components.
As we discuss below, the variation of intrinsic flux density also
seems consistent with this interpretation.

Above, we show that some of the intrinsic optically thin flux
density variations of individual components could be as great as
a factor of 430 (C5) over the entire time range. However, we only
see up to a factor of 30 increase over a single time interval of a
particular component and up to a factor of 39 decrease. We first
explore whether the range of intrinsic flux density is consistent
with what we might expect from a shocked jet, as presented in
the previous section. We can use Equation (20) for comparison
to two examples from our data. Both for components C1 and
C5, we see that around the year 2010.0 (see Table 1) there was
an increase of intrinsic flux density (by a factor of 9 for C1 and
a factor of 30 for C5) and a simultaneous decrease in viewing
angle. If we assume that Γ′ is between 1 and 2, and assuming
that ε = 0.5–1, b = 1–2, and p = 2–3, and n = 2.67–3.33
if the jet is adiabatic, we can then substitute in the values of
β, cos ϑ , tej that are relevant for these components. For C1,
we use Γ = 11.19–15.82 (β = 0.996–0.998), and ϑ from 0.◦6
to 1.◦5. During this time period, 2008.75–2010.82, Fν, int varies
from 1.5 × 10−7 Jy to 1.3 × 10−6 Jy. The ejection time of
this component from the core was 1987.8 (Lister et al. 2009b).
We predict a range of amplifications of intrinsic flux density
of approximately 36–210 (16–1100 if we relax the adiabatic
assumption, and allow n to range from 2 to 5). For C5, we use
Γ = 31.63–35.36 (β = 0.9995–0.9996), and ϑ is constant at
0.◦06. During this time period, 2010.0–2010.82, Fν, int varies
from 1.5 × 10−9 Jy to 4.5 × 10−8 Jy. The ejection time from the
core for this component was in 1997.36 (Lister et al. 2009b). We
predict a range of amplifications of intrinsic flux density in this
case of approximately 69–720 (73–1300 if we relax the adiabatic
assumption and allow n to range from 2 to 5). Though even the
low end of this range is higher than the level of variability
that we actually observe, it is encouraging that the component
with the lower predicted amplification factor also has the lowest
observed magnitude of variability. The high end of the range of
amplification values for both cases presented here is as a result
of the higher possible shock speeds. Clearly, the higher shock
speeds (Γ′ = 2 or higher) are ruled out. So, though some of
the variations are consistent with such a shocked jet model, in
detail, a more refined model would be needed to describe all of
the time intervals.

Additionally, polarization observations of one component
can further constrain values of Lorentz factor and viewing
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angle. The fractional linear polarization of component (C5)
was approximately 40% for 2002.9 (Lister & Homan 2005).
Because the electric field vectors are roughly parallel to the
component motion direction, we know that the magnetic field
must be perpendicular to the jet, as we would expect for a
shock (Laing 1980). However, shock-ordered fields only appear
ordered if they are being viewed from the side. Because we
see a high level of field order from this component, we must
be viewing somewhere close to 90◦ in the aberrated frame. A
component being viewed at 90◦ in the aberrated frame must be
moving close to the critical angle, β = cos ϑ , as can be seen by
considering relativistic aberration of angles:

cos ϑab = cos ϑ − β

1 − β cos ϑ
. (29)

Here, ϑab refers to the viewing angle in the aberrated frame.
For β = 0.9995–0.9997 (Γ = 31.63–40.83) this gives ϑ =
1.◦4–1.◦8, which is significantly larger than the ϑ = 0.◦5 − 0.◦9
derived for this time period and reported in Table 1.

5. CONCLUSIONS

Analysis of the proper motions of the superluminal com-
ponents of 3C 279 indicates significant accelerations for four
components in at least one of the two calculated directions of
acceleration (parallel and perpendicular to the original compo-
nent motion). We see over all the components studied here a
range of Lorentz factors of Γ = 10–41, viewing angle with
range ϑ = 0.◦1–5.◦0, and intrinsic flux density in the range
Fν, int = 1.5 × 10−9–1.5 × 10−5 Jy. Considering the individ-
ual components, Lorentz factor varies from Γ = 12–16 for C1,
Γ = 31–41 for C5, Γ = 29–41 for C6, and Γ = 9–12 for
C8. These ranges indicate that we cannot be looking at a single
underlying jet flow speed, but may be seeing separate pattern
speeds from shocks moving through the jet, or a combination
of flow speed and pattern speed. We see that the magnitude of
variability of the intrinsic flux density is between about 1.4 (C8)
and 430 (C5) and viewing angle is in the range 0.◦5–5.◦0 for
C8, 0.◦1–0.◦9 for C5 (these last two have the largest range), and
0.◦6–1.◦5 (the smallest range) for C1. Modeling of the accelera-
tions shows consistency with jet bending in the viewing angle
direction, and in the direction azimuthal to the viewing angle.
Though these results are consistent with a shocked jet model, a
more detailed time-dependent model including bends in the jet
would be needed to consider the specifics for each component.
Since all four components have at least one direction of accel-
eration that is less than 3σ times the associated uncertainty, this
may be further indication that a more refined model is needed.

However, it may be possible that blending of shocks moving at
different speeds is partly causing these observed effects (Agudo
et al. 2001). Polarization measurements of component C5 also
indicate viewing angles somewhat larger than those determined

by other means (about 1.◦4–1.◦8 from polarization and 0.◦5–0.◦9
from kinematics and flux variation) during one epoch (2002.9).
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