421 research outputs found

    Simulation of 3D Porous Media Flows with Application to Polymer Electrolyte Fuel Cells

    Get PDF
    A 3D lattice Boltzmann (LB) model with twenty-seven discrete velocities is presented and used for the simulation of three-dimensional porous media flows. Its accuracy in combination with the half-way bounce back boundary condition is assessed. Characteristic properties of the gas diffusion layers that are used in polymer electrolyte fuel cells can be determined with this model. Simulation in samples that have been obtained via X-ray tomographic microscopy, allows to estimate the values of permeability and relative effective diffusivity. Furthermore, the computational LB results are compared with the results of other numerical tools, as well as with experimental value

    Carotenoids and chlorophyll content in natural soap with addition of vegetative raw material

    Get PDF
    In the present study, we performed quantitative and qualitative determination of carotenoids and chlorophyll in five samples of natural soap with addition of vegetative raw material: Green tea, Chamerion angustifolium (L.) Holub, Trifolium pratense L., Alchemilla vulgaris L. and Urtica dioica L. There was developed the method of quantitative content of carotenoids and chlorophyll using spectrophotometry with analytical wavelength at 450 nm (carotenoids) and 667 nm (chlorophyll). Qualitative determination was carried out by the comparative TLC analysis. As mobile phases were used in the experiment following a mixed solvent of hexane-acetone (3: 1). Identification of carotenoids was carried out according to standard samples β -carotene and literature data

    Electroencephalography (EEG) for neurological prognostication after cardiac arrest and targeted temperature management; rationale and study design.

    Get PDF
    BACKGROUND: Electroencephalography (EEG) is widely used to assess neurological prognosis in patients who are comatose after cardiac arrest, but its value is limited by varying definitions of pathological patterns and by inter-rater variability. The American Clinical Neurophysiology Society (ACNS) has recently proposed a standardized EEG-terminology for critical care to address these limitations. METHODS/DESIGN: In the TTM-trial, 399 post cardiac arrest patients who remained comatose after rewarming underwent a routine EEG. The presence of clinical seizures, use of sedatives and antiepileptic drugs during the EEG-registration were prospectively documented. DISCUSSION: A well-defined terminology for interpreting post cardiac arrest EEGs is critical for the use of EEG as a prognostic tool. TRIAL REGISTRATION: The TTM-trial is registered at ClinicalTrials.gov (NCT01020916)

    Frequency domain EEG source localization of ictal epileptiform activity in patients with partial complex epilepsy of temporal lobe origin

    Get PDF
    The aim of this study was to investigate whether EEG source localization in the frequency domain, using the FFT dipole approximation (Lehmann, D. and Michel, C.M. Electroenceph. clin. Neurophysiol., 1990, 76: 271-276), would be useful for quantifying the frequency content of epileptic seizure activity. Between one and 7 extracranially recorded seizures were analyzed in each of 7 patients with mesolimbic epilepsy, who were seizure-free after temporal lobe resection. The full scalp frequency spectrum for the first 4 s after seizure onset, as well as for subsequent periods, was determined. Power peaks in the spectra were identified, and an instant dipole fit was performed for the frequencies corresponding to these peaks. Ictal frequencies, ranging between 3.5 and 8.5 Hz, showed a variable degree of stability over time in the different patients. For a particular frequency, dipole results were similar during the different phases of seizure development. In patients with more than one prominent frequency, dipole results for the different frequencies were similar. Dipole results were also similar between patients. We conclude that dipole localization of dominant frequencies, as obtained from full scalp FFT analysis, gives quite reproducible results for seizures originating in the mesial temporal area. The method may become a useful tool for the pre-surgical identification of patients with mesolimbic epilepsy

    Space-oriented segmentation and 3-dimensional source reconstruction of ictal EEG patterns

    Get PDF
    OBJECTIVES: Characterization of the EEG pattern during the early phase of a seizure is crucial for identifying the epileptic focus. The purpose of the present investigation was to evaluate a method that divides ictal EEG activity into segments of relatively constant surface voltage distribution, and to provide a 3-dimensional localization of the activity during the different segments. METHODS: For each timepoint the electrical voltage distribution on the scalp (the voltage map) was determined from the digitized EEG recording. Through a spatial cluster analysis time sequences where the maps did not change much (segments) were identified, and a 3-dimensional source reconstruction of the activity corresponding to the different mean maps was performed using a distributed linear inverse solution algorithm. RESULTS: Segments dominating early in seizure development were identified, and source reconstruction of the EEG activity corresponding to the maps of these segments yielded results which were consistent with the results from invasive recordings. In some cases a sequence of consecutive segments was obtained, which might reflect ictal propagation. CONCLUSIONS: Segmentation of ictal EEG with subsequent 3-dimensional source reconstruction is a useful method to non-invasively determine the initiation and perhaps also the spread of epileptiform activity in patients with epileptic seizures

    Multivariate Modelling of Pedestrian Fatality Risk Through on the Spot Accident Investigation

    Full text link
    Pedestrians are the most vulnerable users of public roads and represent one of the largest groups of road casualties; their death rate around the world due to vehicle-pedestrian collisions is high and tending to rise. In Spain, as in other countries of the European Union, steps have been taken to reduce the number and consequences of such accidents, with encouraging results in recent years. A key to countering this concern is the accident research activity that has obtained remarkable achievements in different fields, especially when multidisciplinary approaches are taken. This paper describes the development of a multivariate model that is able to detect the most influential parameters on the consequences of vehicle-pedestrian collision and to quantify their impact on pedestrian fatality risk. First, an accident database containing detailed information and parameters of vehicle-pedestrian collisions in Madrid has been developed. The accidents were investigated on the spot by INSIA accident investigation teams and analyzed using advanced reconstruction techniques. The model was then developed with two components: (1) a classification tree that characterizes and selects the explanatory variables, identifying their interactions, and (2) a binary logistic regression to quantify the influence of each variable and interaction resulting from the classification tree. The whole model represents an important tool for identifying, quantifying and predicting the potential impact of measures aimed at reducing injuries in vehicle-pedestrian collisions

    Calculating carbon nanotube–catalyst adhesion strengths

    Get PDF
    Density-functional theory is used to assess the validity of modeling metal clusters as single atoms or rings of atoms when determining adhesion strengths between clusters and single-walled carbon nanotubes ͑SWNTs͒. Representing a cluster by a single atom or ring gives the correct trends in SWNT-cluster adhesion strengths ͑FeϷ CoϾ Ni͒, but the single-atom model yields incorrect minimum-energy structures for all three metals. We have found that this is because of directional bonding between the SWNT end and the metal cluster, which is captured in the ring model but not by the single atom. Hence, pairwise potential models that do not describe directional bonding correctly, and which are commonly used to study these systems, are expected to give incorrect minimum-energy structures

    The Effect of Fractal Contact Lenses on Peripheral Refraction in Myopic Model Eyes

    Full text link
    Purpose: To test multizone contact lenses in model eyes: Fractal Contact Lenses (FCLs), designed to induce myopic peripheral refractive error (PRE). Methods: Zemax ray-tracing software was employed to simulate myopic and accommodation-dependent model eyes fitted with FCLs. PRE, defined in terms of mean sphere M and 90–180 astigmatism J180, was computed at different peripheral positions, ranging from 0 to 35 in steps of 5, and for different pupil diameters (PDs). Simulated visual performance and changes in the PRE were also analyzed for contact lens decentration and model eye accommodation. For comparison purposes, the same simulations were performed with another commercially available contact lens designed for the same intended use: the Dual Focus (DF). Results: PRE was greater with FCL than with DF when both designs were tested for a 3.5 mm PD, and with and without decentration of the lenses. However, PRE depended on PD with both multizone lenses, with a remarkable reduction of the myopic relative effect for a PD of 5.5 mm. The myopic PRE with contact lenses decreased as the myopic refractive error increased, but this could be compensated by increasing the power of treatment zones. A peripheral myopic shift was also induced by the FCLs in the accommodated model eye. In regard to visual performance, a myopia under-correction with reference to the circle of least confusion was obtained in all cases for a 5.5 mm PD. The ghost images, generated by treatment zones of FCL, were dimmer than the ones produced with DF lens of the same power. Conclusions: FCLs produce a peripheral myopic defocus without compromising central vision in photopic conditions. FCLs have several design parameters that can be varied to obtain optimum results: lens diameter, number of zones, addition and asphericity; resulting in a very promising customized lens for the treatment of myopia progression.This research was supported by the Ministerio de Economia y Competitividad (grant FIS2011-23175), the Generalitat Valenciana (grant PROMETEO2009-077) and the Universitat Politecnica de Valencia (grant INNOVA SP20120569), Spain.Rodríguez Vallejo, M.; Benlloch Fornés, JI.; Pons Martí, A.; Monsoriu Serra, JA.; Furlan, WD. (2014). The Effect of Fractal Contact Lenses on Peripheral Refraction in Myopic Model Eyes. Current Eye Research. 39(12):1-10. https://doi.org/10.3109/02713683.2014.903498S110391
    corecore