90 research outputs found

    Semi-viviparous embryo development and dehydrin expression in the mangrove Rhizophora mucronata Lam.

    Get PDF
    Rhizophora mucronata Lam. is a tropical mangrove with semi-viviparous (cotyledon body protrusion before shedding), non-quiescent and non-desiccating (recalcitrant) seeds. As recalcitrance has been thought to relate to the absence of desiccation-related proteins such as dehydrins, we for the first time systematically described and classified embryogenesis in R. mucronata and assessed the presence of dehydrin-like proteins. Embryogenesis largely follows the classic pattern till stage eight, the torpedo stage, with the formation of a cotyledonary body. Ovule and embryo express radical adaptations to semi-vivipary in the saline environment: (1) A large, highly vacuolated and persistent endosperm without noticeable food reserves that envelopes the developing embryo. (2) Absence of vascular tissue connections between embryo and maternal tissue, but, instead, transfer layers in between endosperm and integument and endosperm and embryo. Dehydrin-like proteins (55–65 kDa) were detected by the Western analysis, in the ovules till stage 10 when the integuments are dehisced. An additional 50 kDa band was detected at stages 6–8. Together these results suggest a continuous flow of water with nutrients from the integument via the endosperm to the embryo, circumventing the vascular route and probably suppressing the initially induced dehydrin expression

    Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global transcriptional analysis of loblolly pine (<it>Pinus taeda </it>L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine.</p> <p>Results</p> <p>Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≀ 2 × 10<sup>-30</sup>) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function.</p> <p>Conclusion</p> <p>PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the genes identified are known to be up-regulated in response to osmotic stress in pine and other plant species and encode proteins involved in both signal transduction and stress tolerance. Gene expression levels returned to control values within a 48-hour recovery period in all but 76 transcripts. Correlation network analysis indicates a scale-free network topology for the pine root transcriptome and identifies central nodes that may serve as drivers of drought-responsive transcriptome dynamics in the roots of loblolly pine.</p

    Bioaccumulation and Toxicity of Organic Chemicals in Terrestrial Invertebrates

    Get PDF
    Terrestrial invertebrates are key components in ecosystems, with crucial roles in soil structure, functioning, and ecosystem services. The present chapter covers how terrestrial invertebrates are impacted by organic chemicals, focusing on up-to-date information regarding bioavailability, exposure routes and general concepts on bioaccumulation, toxicity, and existing models. Terrestrial invertebrates are exposed to organic chemicals through different routes, which are dependent on both the organismal traits and nature of exposure, including chemical properties and media characteristics. Bioaccumulation and toxicity data for several groups of organic chemicals are presented and discussed, attempting to cover plant protection products (herbicides, insecticides, fungicides, and molluscicides), veterinary and human pharmaceuticals, polycyclic aromatic compounds, polychlorinated biphenyls, flame retardants, and personal care products. Chemical mixtures are also discussed bearing in mind that chemicals appear simultaneously in the environment. The biomagnification of organic chemicals is considered in light of the consumption of terrestrial invertebrates as novel feed and food sources. This chapter highlights how science has contributed with data from the last 5 years, providing evidence on bioavailability, bioaccumulation, and toxicity derived from exposure to organic chemicals, including insights into the main challenges and shortcomings to extrapolate results to real exposure scenarios

    Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS) technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought.</p> <p>Results</p> <p>RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG)-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed.</p> <p>Conclusions</p> <p>The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene expression and functional annotation in response to drought.</p

    Phosphoproteomic Analysis Reveals that Dehydrins ERD10 and ERD14 are Phosphorylated by SNF1-related Protein Kinase 2.10 in Response to Osmotic Stress

    Get PDF
    SNF1-related protein kinases 2 (SnRK2s) regulate the plant responses to abiotic stresses, especially water deficits. They are activated in plants subjected to osmotic stress, and some of them are additionally activated in response to enhanced concentrations of abscisic acid (ABA) in plant cells. The SnRK2s that are activated in response to ABA are key elements of ABA signaling that regulate plant acclimation to environmental stresses and ABA-dependent development. Much less is known about the SnRK2s that are not activated by ABA, albeit several studies have shown that these kinases are also involved in response to osmotic stress. Here, we show that one of the Arabidopsis thaliana ABA-non-activated SnRK2s, SnRK2.10, regulates not only the response to salinity but also the plant sensitivity to dehydration. Several potential SnRK2.10 targets phosphorylated in response to stress were identified by a phosphoproteomic approach, including the dehydrins ERD10 and ERD14. Their phosphorylation by SnRK2.10 was confirmed in vitro. Our data suggest that the phosphorylation of ERD14 within the S-segment is involved in the regulation of dehydrin subcellular localization in response to stress

    Analysis of injuries and causes of death in fatal farm-related incidents in Lower Silesia, Poland

    No full text
    Introduction. Workers in the agriculture sector are among the groups at the highest risk of fatal occupational injuries. The aim of study is to show the most common causes of farm-related deaths in Poland, with the circumstances, injuries sustained and mechanisms of death. Materials and methods. There were 109 (90.8%) males aged 19–81 and 11 females aged 19–73. 18.3% were over 60 years of age. There were 6 children (boys) aged between 2–6. A retrospective review was undertaken of 16,140 medico-legal autopsy reports by the Department of Forensic Medicine in Wroclaw between 1991–2011, which included 120 fatal farm-related incidents. The study protocol included gender, age, date and cause of death, all injuries found, circumstances and mechanism of death, place of death and blood alcohol concentration. Results. The most common (33/120; 27.5%) causes of death, both in men and women, were traffic accidents, the second being hit, crushed or buried by materials and falling objects. The most common injury was multi-organ damage (27/120; 22.5%), less common were cranio-cerebral injury (17/120; 14.2%) and thoracic blunt trauma (11/120; 9.2%). In multi-organ and thoracic traumas the mechanism of death was almost always exsanguinations. 85.3% of victims died at the place found. 37.2% of victims were drunk. Conclusion. In Poland, fatal injuries occurring in agriculture are mostly related to the misuse of transport and machinery. The main efforts to prevent accidents are engineering improvements, use of personal protective equipment, alcohol intake prevention and appropriate education of the workforce. Special prevention programmes should take gender and age differences into account
    • 

    corecore