2,634 research outputs found

    Introducing the concept of Potential Aerosol Mass (PAM)

    No full text
    International audiencePotential Aerosol Mass (PAM) can be defined as the maximum aerosol mass that the oxidation of precursor gases produces. In the measurement, all precursor gases are rapidly oxidized with extreme amounts of oxidants to low volatility compounds, resulting in the aerosol formation. Oxidation occurs in a small, simple, flow-through chamber that has a short residence time and is irradiated with ultraviolet light. The amount of the oxidants ozone (O3), hydroxyl (OH), and hydroperoxyl (HO2) were measured directly and can be controlled by varying the UV light and the relative humidity. Maximum values were 40 ppmv for O3, 500 pptv for OH, and 4 ppbv for HO2. The oxidant amounts are 100 to 1000 times troposphere values, but the ratios OH/O3 and HO2/OH are similar to troposphere values. The aerosol production mechanism and the aerosol mass yield were studied for several controlling variables, such as temperature, relative humidity, oxidant concentration, presence of nitrogen oxides (NOx), precursor gas composition and amount, and the presence of acidic seed aerosol. The measured secondary organic aerosol (SOA) yield of several natural and anthropogenic volatile organic compounds and a mixture of hydrocarbons in the PAM chamber were similar to those obtained in large, batch-style environmental chambers. This PAM method is being developed for measuring potential aerosol mass in the atmosphere, but is also useful for examining SOA processes in the laboratory and in environmental chambers

    Introducing the concept of Potential Aerosol Mass (PAM)

    Get PDF
    International audiencePotential Aerosol Mass (PAM) can be defined as the maximum aerosol mass that the oxidation of precursor gases produces. In the measurement, all precursor gases are rapidly oxidized with extreme amounts of oxidants to low volatility compounds, resulting in the aerosol formation. Oxidation occurs in a small, simple, flow-through chamber that has a short residence time and is irradiated with ultraviolet light. The amount of the oxidants ozone (O3), hydroxyl (OH), and hydroperoxyl (HO2) were measured directly and can be controlled by varying the UV light and the relative humidity. Maximum values were 40 ppmv for O3 500 pptv for OH, and 4 ppbv for HO2. The oxidant amounts are 100 to 1000 times troposphere values, but the ratios OH/O3 and HO2/OH are similar to troposphere values. The aerosol production mechanism and the aerosol mass yield were studied for several controlling variables, such as temperature, relative humidity, oxidant concentration, presence of nitrogen oxides (NOx), precursor gas composition and amount, and the presence of acidic seed aerosol. The measured secondary organic aerosol (SOA) yield of several natural and anthropogenic volatile organic compounds and a mixture of hydrocarbons in the PAM chamber were similar to those obtained in large, batch-style environmental chambers. This PAM method is being developed for measuring potential aerosol mass in the atmosphere, but is also useful for examining SOA processes in the laboratory and in environmental chambers

    New electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range

    Get PDF
    We present a method for producing sub-100 fs electron bunches that are suitable for single-shot ultrafast electron diffraction experiments in the 100 keV energy range. A combination of analytical results and state-of-the-art numerical simulations show that it is possible to create 100 keV, 0.1 pC, 20 fs electron bunches with a spotsize smaller than 500 micron and a transverse coherence length of 3 nm, using established technologies in a table-top set-up. The system operates in the space-charge dominated regime to produce energy-correlated bunches that are recompressed by established radio-frequency techniques. With this approach we overcome the Coulomb expansion of the bunch, providing an entirely new ultrafast electron diffraction source concept

    Antigenic Complementarity in the Origins of Autoimmunity: A General Theory Illustrated With a Case Study of Idiopathic Thrombocytopenia Purpura

    Get PDF
    We describe a novel, testable theory of autoimmunity, outline novel predictions made by the theory, and illustrate its application to unravelling the possible causes of idiopathic thrombocytopenia purpura (ITP). Pairs of stereochemically complementary antigens induce complementary immune responses (antibody or T-cell) that create loss of regulation and civil war within the immune system itself. Antibodies attack antibodies creating circulating immune complexes; T-cells attack T-cells creating perivascular cuffing. This immunological civil war abrogates the self-nonself distinction. If at least one of the complementary antigens mimics a self antigen, then this unregulated immune response will target host tissues as well. Data demonstrating that complementary antigens are found in some animal models of autoimmunity and may be present in various human diseases, especially ITP, are reviewed. Specific mechanisms for preventing autoimmunity or suppressing existing autoimmunity are derived from the theory, and critical tests proposed. Finally, we argue that Koch's postulates are inadequate for establishing disease causation for multiple-antigen diseases and discuss the possibility that current research has failed to elucidate the causes of human autoimmune diseases because we are using the wrong criteria

    Susceptibility of Wild Canids to SARS-CoV-2

    Get PDF
    We assessed 2 wild canid species, red foxes (Vulpes vulpes) and coyotes (Canis latrans), for susceptibility to SARS-CoV-2. After experimental inoculation, red foxes became infected and shed infectious virus. Conversely, experimentally challenged coyotes did not become infected; therefore, coyotes are unlikely to be competent hosts for SARS-CoV-2. Throughout the COVID-19 pandemic, multiple instances of natural infections with SARS-CoV-2 have been reported in pet dogs, likely after exposure to an infected human (1–3). Domestic dogs appear to be minimally susceptible to SARS-CoV-2, as indicated by experimental inoculations resulting in reverse transcription PCR–positive samples and low titer antibody responses but no clinical disease nor shedding of infectious virus (4,5). The ability of SARS-CoV-2 to infect domestic dogs, in addition to several other species of carnivores, suggests that additional members of the canid family might be susceptible to infection. Wild canids, such as red foxes (Vulpes vulpes) and coyotes (Canis latrans), are of particular interest given how widely distributed these animals are, their frequent proximity to humans, and that they prey, scavenge upon, or otherwise interact with species demonstrated to be susceptible to SARS-CoV-2, including felids, skunks, rodents, and white-tailed deer (6,7). Foxes (species not specified) have been included in modeling efforts and serosurveillance studies aiming to predict animal hosts of SARS-CoV-2, but their ability to serve as hosts for SARS-CoV-2 remains unclear

    Collegiate Athletic Trainers’ Experiences Planning for Return-to-Sports During COVID-19: A Qualitative Research Study

    Get PDF
    Purpose: The purpose of this study was to explore the role of intercollegiate head athletic trainers in the process of planning to resume sport, as well as their experiences across the course of the pandemic to identify key strategies, challenges, and future considerations during the Covid-19 pandemic. Method: This exploratory, descriptive qualitative study was conducted via one-on-one semi structured interviews through the Zoom video conference technology. Twenty-four head athletic trainers across NCAA Division I, II, and III institutions participated in the study. Results: Emerging themes included the development of detailed, institution-specific plans with shared elements such as policies for testing and screening, modifications to facilities and cleaning, and incorporation of coach and athlete education. Athletic trainers discussed the processes they used to create their return-to-sport policies, which included professional development and interprofessional collaborations. While participants were confident in their plans, they acknowledged the need to overcome logistical and psychosocial challenges, such as the recognition that the success of their plans relied on numerous variables that could not be completely controlled. Conclusion: It is clear that NCAA ATs have played – and will continue to play – an integral role in overcoming challenges to promote a safe return-to-sports amidst the COVID-19 pandemic via education, policy making, and delivery of healthcare services. The challenges imposed by the accompanying set of circumstances have strained these ATs’ practical tendencies and procedures. ATs have met these challenges through collaboration, information-seeking, and acceptance of the situation. NCAA ATs have embraced the opportunity to lead the way towards safe, successful campus reopening and resumption of competition

    Three-Dimensional Quantum Percolation Studied by Level Statistics

    Full text link
    Three-dimensional quantum percolation problems are studied by analyzing energy level statistics of electrons on maximally connected percolating clusters. The quantum percolation threshold \pq, which is larger than the classical percolation threshold \pc, becomes smaller when magnetic fields are applied, i.e., \pq(B=0)>\pq(B\ne 0)>\pc. The critical exponents are found to be consistent with the recently obtained values of the Anderson model, supporting the conjecture that the quantum percolation is classified onto the same universality classes of the Anderson transition. Novel critical level statistics at the percolation threshold is also reported.Comment: to appear in the May issue of J. Phys. Soc. Jp

    An Environmental Scan of Mindfulness-Based Interventions on University and College Campuses: A Research Note

    Get PDF
    The purpose of this research note is to provide readers with an understanding of the diverse types of student mental health interventions that are being offered on North American universities/ colleges broken down into two types of interventions: (1) traditional, or non-mindfulness-based interventions, and (2) mindfulness-based interventions. Data were collected, organized, and synthesized during the first 5 months of 2016 (via a simple Google searches) for all North American universities/colleges that offered their students mental health interventions on their campuses. Traditional, or non-mindfulness-based interventions remain widely in use on university/college campuses and include: prevention and outreach, support groups and workshops, individual counseling, and self-help. Mindfulness-based interventions, although less widely available, include: mindfulness-based cognitive therapy, mindfulness- based stress reduction, guided meditations and yoga, compassion training, mindfulness-based technology, and mindful eating. There is an abundance of data that seem to indicate that colleges/universities are increasing the mental health interventions they offer to their students. In addition, the use of mindfulness- based interventions (a sub-set of mental health interventions) seems to be being used with an increasing frequency

    A Targeted RNA Interference Screen Reveals Novel Epigenetic Factors That Regulate Herpesviral Gene Expression

    Get PDF
    ABSTRACT Herpes simplex virus (HSV) utilizes and subverts host chromatin mechanisms to express its lytic gene products in mammalian cells. The host cell attempts to silence the incoming viral genome by epigenetic mechanisms, but the viral VP16 and ICP0 proteins promote active chromatin on the viral genome by recruiting other host epigenetic factors. However, the dependence on VP16 and ICP0 differs in different cell lines, implying cell type-dependent functional contributions of epigenetic factors for HSV gene expression. In this study, we performed a targeted RNA interference (RNAi) screen for cellular chromatin factors that are involved in regulation of herpes simplex virus (HSV) gene expression in U2OS osteosarcoma cells, a cell line that complements ICP0 mutant and VP16 mutant virus replication. In this screen, we found the same general classes of chromatin factors that regulate HSV gene expression in U2OS cells as in other cell types, including histone demethylases (HDMs), histone deacetylases (HDACs), histone acetyltransferases (HATs), and chromatin-remodeling factors, but the specific factors within these classes are different from those identified previously for other cell types. For example, KDM3A and KDM1A (LSD1) both demethylate mono- and dimethylated H3K9, but KDM3A emerged in our screen of U2OS cells. Further, small interfering RNA (siRNA) and inhibitor studies support the idea that KDM1A is more critical in HeLa cells, as observed previously, while KDM3A is more critical in U2OS cells. These results argue that different cellular chromatin factors are critical in different cell lines to carry out the positive and negative epigenetic effects exerted on the HSV genome
    corecore