57 research outputs found

    Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST

    Get PDF
    We constructed several multilocus DNA sequence datasets to assess the phylogenetic diversity of insecticolous fusaria, especially focusing on those housed at the Agricultural Research Service Collection of Entomopathogenic Fungi (ARSEF), and to aid molecular identifications of unknowns via the FUSARIUM-ID and Fusarium MLST online databases and analysis packages. Analyses of a 190-taxon, two-locus dataset, which included 159 isolates from insects, indicated that: (i) insect-associated fusaria were nested within 10 species complexes spanning the phylogenetic breadth of Fusarium, (ii) novel, putatively unnamed insecticolous species were nested within 8/10 species complexes and (iii) Latin binomials could be applied with confidence to only 18/58 phylogenetically distinct fusaria associated with pest insects. Phylogenetic analyses of an 82-taxon, three-locus dataset nearly fully resolved evolutionary relationships among the 10 clades containing insecticolous fusaria. Multilocus typing of isolates within four species complexes identified surprisingly high genetic diversity in that 63/65 of the fusaria typed represented newly discovered haplotypes. The DNA sequence data, together with corrected ABI sequence chromatograms and alignments, have been uploaded to the following websites dedicated to identifying fusaria: FUSARIUM-ID (http://isolate.fusariumdb.org) a

    Structural, morphological and dielectric properties of ErNbO4 prepared by the sol-gel method

    Get PDF
    In this work, ErNbO4 samples were prepared using the sol-gel method, through the citrate route, and heat-treated at temperatures between 700 and 1600 °C. The structure was studied by X-ray diffraction and Raman spectroscopy. The crystallite size was estimated using the Rietveld refinement and the Sherrer's formula, presenting values from 31.27 to 86.65 nm and from 40.96 to 78.23 nm, respectively. The morphology was studied by scanning electron microscopy. The measurement of the complex permittivity was made using the small perturbation technique, with a cavity operating in TE105 mode, at resonant frequency of 2.7 GHz. The increase of the treatment temperature promoted the increase of the dielectric constant and the dielectric losses were still maintained with low values, allowing their potential application in electric storage devices. The dielectric constant of ErNbO4 in a zero porosity sample case was estimated and compared with the experimental values.publishe

    Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes

    Get PDF
    Advancement of DNA sequencing technology allows the routine use of genome sequences in the various fields of microbiology. The information held in genome sequences proved to provide objective and reliable means in the taxonomy of prokaryotes. Here, we describe the minimal standards for the quality of genome sequences and how they can be applied for taxonomic purposes

    Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities

    Get PDF
    Vertical stacking of atomically thin layered materials opens new possibilities for the fabrication of heterostructures with favorable optoelectronic properties. The combination of graphene, hexagonal boron nitride and semiconducting transition metal dichalcogenides allows fabrication of electroluminescence (EL) devices, compatible with a wide range of substrates. Here, we demonstrate a full integration of an electroluminescent van der Waals heterostructure in a monolithic optical microcavity made of two high reflectivity dielectric distributed Bragg reflectors (DBRs). Owing to the presence of graphene and hexagonal boron nitride protecting the WSe2 during the top mirror deposition, we fully preserve the optoelectronic behaviour of the device. Two bright cavity modes appear in the EL spectrum featuring Q-factors of 250 and 580 respectively: the first is attributed directly to the monolayer area, while the second is ascribed to the portion of emission guided outside the WSe2 island. By embedding the EL device inside the microcavity structure, a significant modification of the directionality of the emitted light is achieved, with the peak intensity increasing by nearly two orders of magnitude at the angle of the maximum emission compared with the same EL device without the top DBR. Furthermore, the coupling of the WSe2 EL to the cavity mode with a dispersion allows a tuning of the peak emission wavelength exceeding 35 nm (80 meV) by varying the angle at which the EL is observed from the microcavity. This work provides a route for the development of compact vertical-cavity surface-emitting devices based on van der Waals heterostructures

    WSe2 Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature

    Get PDF
    Monolayers of molybdenum and tungsten dichalcogenides are direct bandgap semiconductors, which makes them promising for optoelectronic applications. In particular, van der Waals heterostructures consisting of monolayers of MoS2 sandwiched between atomically thin hexagonal boron nitride (hBN) and graphene electrodes allows one to obtain light emitting quantum wells (LEQWs) with low-temperature external quantum efficiency (EQE) of 1%. However, the EQE of MoS2- and MoSe2-based LEQWs shows behavior common for many other materials: it decreases fast from cryogenic conditions to room temperature, undermining their practical applications. Here we compare MoSe2 and WSe2 LEQWs. We show that the EQE of WSe2 devices grows with temperature, with room temperature EQE reaching 5%, which is 250× more than the previous best performance of MoS2 and MoSe2 quantum wells in ambient conditions. We attribute such different temperature dependences to the inverted sign of spin–orbit splitting of conduction band states in tungsten and molybdenum dichalcogenides, which makes the lowest-energy exciton in WSe2 dark

    Virus-specific T cells engineered to coexpress tumor-specific receptors: Persistence and antitumor activity in individuals with neuroblastoma

    Get PDF
    Cytotoxic T lymphocytes (CTLs) directed to nonviral tumor-associated antigens do not survive long term and have limited antitumor activity in vivo, in part because such tumor cells typically lack the appropriate costimulatory molecules. We therefore engineered Epstein-Barr virus (EBV)-specific CTLs to express a chimeric antigen receptor directed to the diasialoganglioside GD2, a nonviral tumor-associated antigen expressed by human neuroblastoma cells. We reasoned that these genetically engineered lymphocytes would receive optimal costimulation after engagement of their native receptors, enhancing survival and antitumor activity mediated through their chimeric receptors. Here we show in individuals with neuroblastoma that EBV-specific CTLs expressing a chimeric GD2-specific receptor indeed survive longer than T cells activated by the CD3-specific antibody OKT3 and expressing the same chimeric receptor but lacking virus specificity. Infusion of these genetically modified cells seemed safe and was associated with tumor regression or necrosis in half of the subjects tested. Hence, virus-specific CTLs can be modified to function as tumor-directed effector cells

    Adverse events following infusion of T cells for adoptive immunotherapy: A 10-year experience

    Get PDF
    Background aims. The Food and Drug Administration (FDA) currently recommends at least 4 h of recipient monitoring after T cell infusions to detect early infusion reactions. Recent catastrophic reactions to 'first-in-man' biologic agents have emphasized the importance of this rule for initial studies of new products. The value of such monitoring for better established agents is less obvious. Methods. We reviewed infusion-related adverse events (AE) following administration of ex vivo-expanded T cell products (antigen-specific cytotoxic T lymphocytes, allodepleted T cells, and genetically modified T cells) on investigational new drug (IND) studies in our center. Results. From 1998 to 2008, we infused 381 T cell products to 180 recipients, enrolled on 18 studies, receiving T cells targeting malignancies or post-transplant viral infections. There were no grade 34 infusion reactions during initial monitoring or 24-h follow-up. Twenty-four mild (grade 12) AE occurred in 21 infusions either during or immediately following infusion (up to 6 h), most commonly nausea and vomiting (10/24, 41.6%), probably because of the dimethyl sulfoxide cryoprotectant, and hypotension (20.8%), attributable to diphenhydramine pre-medication. Twenty-two additional non-severe events were reported within 24 h of infusion, most commonly culture-negative fever, chills and nausea. An increased risk of adverse events was associated with age [incidence rate ratio (IRR) 0.98; 95% confidence interval (CI) 0.961.00, P 0.05], while an increased risk of immediate infusion-related events was higher in patients reporting allergies (IRR 2.72, 95% CI 1.007.40, P 0.05); sex, disease type and T cell source (allogeneic or autologous) had no effect on frequency of adverse events. Conclusions. Infusion of these T cell products was safe in the outpatient setting and associated with no severe reactions, so monitoring for 1 h after infusion is probably sufficient. As many of the AE were attributable to diphenhydramine premedication, a lower dose (0.25 mg/kg) should be selected

    Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes

    Get PDF
    BACKGROUND. Targeting CD30 with monoclonal antibodies in Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL) has had profound clinical success. However, adverse events, mainly mediated by the toxin component of the conjugated antibodies, cause treatment discontinuation in many patients. Targeting CD30 with T cells expressing a CD30- specific chimeric antigen receptor (CAR) may reduce the side effects and augment antitumor activity. METHODS. We conducted a phase I dose escalation study in which 9 patients with relapsed/refractory HL or ALCL were infused with autologous T cells that were gene-modified with a retroviral vector to express the CD30-specific CAR (CD30. CAR-Ts) encoding the CD28 costimulatory endodomain. Three dose levels, from 0.2 - 108 to 2 - 108 CD30.CAR-Ts/m2, were infused without a conditioning regimen. All other therapy for malignancy was discontinued at least 4 weeks before CD30. CAR-T infusion. Seven patients had previously experienced disease progression while being treated with brentuximab. RESULTS. No toxicities attributable to CD30.CAR-Ts were observed. Of 7 patients with relapsed HL, 1 entered complete response (CR) lasting more than 2.5 years after the second infusion of CD30.CAR-Ts, 1 remained in continued CR for almost 2 years, and 3 had transient stable disease. Of 2 patients with ALCL, 1 had a CR that persisted 9 months after the fourth infusion of CD30.CAR-Ts. CD30.CAR-T expansion in peripheral blood peaked 1 week after infusion, and CD30.CAR-Ts remained detectable for over 6 weeks. Although CD30 may also be expressed by normal activated T cells, no patients developed impaired virus-specific immunity. CONCLUSION. CD30.CAR-Ts are safe and can lead to clinical responses in patients with HL and ALCL, indicating that further assessment of this therapy is warranted

    Early transduction produces highly functional chimeric antigen receptor-modified virus-specific T-cells with central memory markers: A Production Assistant for Cell Therapy (PACT) translational application

    Get PDF
    Background: Virus-specific T-cells (VSTs) proliferate exponentially after adoptive transfer into hematopoietic stem cell transplant (HSCT) recipients, eliminate virus infections, then persist and provide long-term protection from viral disease. If VSTs behaved similarly when modified with tumor-specific chimeric antigen receptors (CARs), they should have potent anti-tumor activity. This theory was evaluated by Cruz et al. in a previous clinical trial with CD19.CAR-modified VSTs, but there was little apparent expansion of these cells in patients. In that study, VSTs were gene-modified on day 19 of culture and we hypothesized that by this time, sufficient T-cell differentiation may have occurred to limit the subsequent proliferative capacity of the transduced T-cells. To facilitate the clinical testing of this hypothesis in a project supported by the NHLBI-PACT mechanism, we developed and optimized a good manufacturing practices (GMP) compliant method for the early transduction of VSTs directed to Epstein-Barr virus (EBV), Adenovirus (AdV) and cytomegalovirus (CMV) using a CAR directed to the tumor-associated antigen disialoganglioside (GD2).Results: Ad-CMVpp65-transduced EBV-LCLs effectively stimulated VSTs directed to all three viruses (triVSTs). Transduction efficiency on day three was increased in the presence of cytokines and high-speed centrifugation of retroviral supernatant onto retronectin-coated plates, so that under optimal conditions up to 88% of tetramer-positive VSTs expressed the GD2.CAR. The average transduction efficiency of early-and late transduced VSTs was 55 ± 4% and 22 ± 5% respectively, and early-transduced VSTs maintained higher frequencies of T cells with central memory or intermediate memory phenotypes. Early-transduced VSTs also had higher proliferative capacity and produced higher levels of TH1 cytokines IL-2, TNF-α, IFN-γ, MIP-1α, MIP-1β and other cytokines in vitro.Conclusions: We developed a rapid and GMP compliant method for the early transduction of multivirus-specific T-cells that allowed stable expression of high levels of a tumor directed CAR. Since a proportion of early-transduced CAR-VSTs had a central memory phenotype, they should expand and persist in vivo, simultaneously protecting against infection and targeting residual malignancy. This manufacturing strategy is currently under clinical investigation in patients receiving allogeneic HSCT for relapsed neuroblastoma and B-cell malignancies (NCT01460901 using a GD2.CAR and NCT00840853 using a CD19.CAR)
    corecore