21 research outputs found
Type II and VI collagen in nasal and articular cartilage and the effect of IL-1α on the distribution of these collagens
The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both types of collagen. Microscopic analyses revealed that type II collagen was preferentially localized in the interchondron matrix whereas type VI collagen was primarily found in the direct vicinity of the chondrocytes. Treatment of the sections with hyaluronidase greatly enhanced the signal for both types of collagen. Also in sections of explants cultured with IL-1α a higher level of labeling of the collagens was found. This was apparent without any pre-treatment with hyaluronidase. Under the influence of IL-1α the area positive for type VI collagen that surrounded the chondrocytes broadened. Although the two collagens in both types of cartilage were distributed similarly, a remarkable difference was the higher degree of staining of type VI collagen in articular cartilage. Concomitantly we noted that digestion of this type of cartilage hardly occurred in the presence of IL-1α whereas nasal cartilage was almost completely degraded within 18 days of culture. Since type VI collagen is known to be relatively resistant to proteolysis we speculate that the higher level of type VI collagen in articular cartilage is important in protecting cartilage from digestion
Tissue engineering of functional articular cartilage: the current status
Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality
The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2
Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701
Reversible cerebral vasoconstriction syndrome triggered by an electronic cigarette: case report.
International audienc
Different effects of bone morphogenetic proteins 2, 4, 12, and 13 on the expression of cartilage and bone markers in the MC615 chondrocyte cell line.
International audienceIn order to study the lineage leading to chondrocyte and osteoblast phenotype in vertebrate development, we examined the effect of recombinant human bone morphogenetic protein (BMP)-2, BMP-4, BMP-12 [or growth and differentiation factor (GDF)-7], and BMP-13 (or GDF-6) on the phenotypic expression of the mouse chondrocyte cell line MC615, grown for 1 or 2 weeks in monolayer. Protein synthesis rates were monitored after incubation with [(14)C]proline. BMP-2 and BMP-4 increased protein synthesis, in agreement with our observation by phase-contrast microscopy of a highly refractile matrix around MC615 cells treated with BMP-2 and -4. Markers of the chondrocytic and osteoblastic differentiation were analyzed at mRNA level. Expression of the type II collagen gene, a marker of the cartilage phenotype, was up-regulated in the presence of low concentration of BMP-2 or -4 (50 ng/ml) and down-regulated at higher concentrations (100-400 ng/ml). In parallel, this expression was stable in the presence of BMP-12 or -13 in the dose range tested (50-400 ng/ml). Expression of the matrix Gla protein (MGP) gene, another marker of cartilage, was also reduced in the presence of 100 ng/ml BMP-2 or -4, while it remained stable in the presence of BMP-12 or -13 at the same concentration. In contrast, expression of the bone Gla protein (BGP) gene, or osteocalcin, a marker of the bone phenotype, was induced when the cells were treated with BMP-2 or -4 but was not detected when the cells were treated with BMP-12 or -13. At the same time, BMP-2 or -4 markedly up-regulated expression of type X collagen mRNA, indicating that MC615 cells possess the ability to express traits associated with endochondral ossification, when exposed to specific BMPs. Furthermore, detailed analysis of type II collagen expression showed that the alternatively spliced transcript collagen IIB, specific for cartilage, is expressed concomitantly with BGP. Therefore, MC615 chondrocytes can simultaneously express chondrocytic and osteoblastic markers, in response to BMP-2 or -4, but show minimal response to BMP-12 (or GDF-7) or to BMP-13 (or GDF-6). These results raise the possibility that chondrocytes in vivo can express osteoblastic properties, provided they are induced by BMP-2 or -4.In order to study the lineage leading to chondrocyte and osteoblast phenotype in vertebrate development, we examined the effect of recombinant human bone morphogenetic protein (BMP)-2, BMP-4, BMP-12 [or growth and differentiation factor (GDF)-7], and BMP-13 (or GDF-6) on the phenotypic expression of the mouse chondrocyte cell line MC615, grown for 1 or 2 weeks in monolayer. Protein synthesis rates were monitored after incubation with [(14)C]proline. BMP-2 and BMP-4 increased protein synthesis, in agreement with our observation by phase-contrast microscopy of a highly refractile matrix around MC615 cells treated with BMP-2 and -4. Markers of the chondrocytic and osteoblastic differentiation were analyzed at mRNA level. Expression of the type II collagen gene, a marker of the cartilage phenotype, was up-regulated in the presence of low concentration of BMP-2 or -4 (50 ng/ml) and down-regulated at higher concentrations (100-400 ng/ml). In parallel, this expression was stable in the presence of BMP-12 or -13 in the dose range tested (50-400 ng/ml). Expression of the matrix Gla protein (MGP) gene, another marker of cartilage, was also reduced in the presence of 100 ng/ml BMP-2 or -4, while it remained stable in the presence of BMP-12 or -13 at the same concentration. In contrast, expression of the bone Gla protein (BGP) gene, or osteocalcin, a marker of the bone phenotype, was induced when the cells were treated with BMP-2 or -4 but was not detected when the cells were treated with BMP-12 or -13. At the same time, BMP-2 or -4 markedly up-regulated expression of type X collagen mRNA, indicating that MC615 cells possess the ability to express traits associated with endochondral ossification, when exposed to specific BMPs. Furthermore, detailed analysis of type II collagen expression showed that the alternatively spliced transcript collagen IIB, specific for cartilage, is expressed concomitantly with BGP. Therefore, MC615 chondrocytes can simultaneously express chondrocytic and osteoblastic markers, in response to BMP-2 or -4, but show minimal response to BMP-12 (or GDF-7) or to BMP-13 (or GDF-6). These results raise the possibility that chondrocytes in vivo can express osteoblastic properties, provided they are induced by BMP-2 or -4
Human Fetal and Adult Bone Marrow-Derived Mesenchymal Stem Cells Use Different Signaling Pathways for the Initiation of Chondrogenesis
Cartilage injuries and osteoarthritis are leading causes of disability in developed countries. The regeneration of damaged articular cartilage using cell transplantation or tissue engineering holds much promise but requires the identification of an appropriate cell source with a high proliferative propensity and consistent chondrogenic capacity. Human fetal mesenchymal stem cells (MSCs) have been isolated from a range of perinatal tissues, including first-trimester bone marrow, and have demonstrated enhanced expansion and differentiation potential. However, their ability to form mature chondrocytes for use in cartilage tissue engineering has not been clearly established. Here, we compare the chondrogenic potential of human MSCs isolated from fetal and adult bone marrow and show distinct differences in their responsiveness to specific growth factors. Transforming growth factor beta 3 (TGFβ3) induced chondrogenesis in adult but not fetal MSCs. In contrast, bone morphogenetic protein 2 (BMP2) induced chondrogenesis in fetal but not adult MSCs. When fetal MSCs co-stimulated with BMP2 and TGFβ3 were used for cartilage tissue engineering, they generated tissue with type II collagen and proteoglycan content comparable to adult MSCs treated with TGFβ3 alone. Investigation of the TGFβ/BMP signaling pathway showed that TGFβ3 induced phosphorylation of SMAD3 in adult but not fetal MSCs. These findings demonstrate that the initiation of chondrogenesis is modulated by distinct signaling mechanisms in fetal and adult MSCs. This study establishes the feasibility of using fetal MSCs in cartilage repair applications and proposes their potential as an in vitro system for modeling chondrogenic differentiation and skeletal development studies
[Human chondrocyte responsiveness to bone morphogenetic protein-2 after their in vitro dedifferentiation: Potential use of bone morphogenetic protein-2 for cartilage cell therapy.]
International audienceAIM OF THE STUDY: Cartilage has a limited capacity for healing after trauma. Autologous chondrocyte implantation is widely used for the treatment of patients with focal damage to articular cartilage. Chondrocytes are isolated from biopsy specimen, cultured in monolayers on plastic then transplanted over the cartilage defect. However, chondrocyte amplification on plastic triggers their dedifferentiation. This phenomenon is characterized by loss of expression of type II collagen, the most abundant cartilage protein. The challenge for autologous chondrocyte implantation is to provide patients with well-differentiated cells. The aim of the present study was to test the capability of bone morphogenetic protein (BMP)-2 to promote redifferentiation of human chondrocytes after their expansion on plastic. MATERIALS AND METHODS: Chondrocytes extracted from nasal cartilage obtained after septoplasty were serially cultured in monolayers. After one, two or three passages, BMP-2 was added to the culture medium. The cellular phenotype was characterized at the gene level by using RT-PCR. The expression of genes coding for type II procollagen with the ratio of IIB/IIA forms, aggrecan, Sox9, osteocalcin and type I procollagen was monitored. RESULTS: Our results show that BMP-2 can stimulate chondrogenic expression of the chondrocytes amplified on plastic, without inducing osteogenic expression. However, this stimulatory effect decreases with the number of passages. CONCLUSION: The efficiency of autologous chondrocyte implantation could be improved by using chondrocytes treated with BMP-2 during their in vitro preparation.AIM OF THE STUDY: Cartilage has a limited capacity for healing after trauma. Autologous chondrocyte implantation is widely used for the treatment of patients with focal damage to articular cartilage. Chondrocytes are isolated from biopsy specimen, cultured in monolayers on plastic then transplanted over the cartilage defect. However, chondrocyte amplification on plastic triggers their dedifferentiation. This phenomenon is characterized by loss of expression of type II collagen, the most abundant cartilage protein. The challenge for autologous chondrocyte implantation is to provide patients with well-differentiated cells. The aim of the present study was to test the capability of bone morphogenetic protein (BMP)-2 to promote redifferentiation of human chondrocytes after their expansion on plastic. MATERIALS AND METHODS: Chondrocytes extracted from nasal cartilage obtained after septoplasty were serially cultured in monolayers. After one, two or three passages, BMP-2 was added to the culture medium. The cellular phenotype was characterized at the gene level by using RT-PCR. The expression of genes coding for type II procollagen with the ratio of IIB/IIA forms, aggrecan, Sox9, osteocalcin and type I procollagen was monitored. RESULTS: Our results show that BMP-2 can stimulate chondrogenic expression of the chondrocytes amplified on plastic, without inducing osteogenic expression. However, this stimulatory effect decreases with the number of passages. CONCLUSION: The efficiency of autologous chondrocyte implantation could be improved by using chondrocytes treated with BMP-2 during their in vitro preparation
Children and screens: Groupe de Pédiatrie Générale (Société française de pédiatrie) guidelines for pediatricians and families
International audienc