35 research outputs found

    Diversity of hard-bottom fauna relative to environmental gradients in Kongsfjorden, Svalbard

    Get PDF
    A baseline study of hard-bottom zoobenthos in relation to environmental gradients in Kongsfjorden, a glacial fjord in Svalbard, is presented, based on collections from 1996 to 1998. The total species richness in 62 samples from 0 to 30 m depth along five transects was 403 species. Because 32 taxa could not be identified to species level and because 11 species are probably new to science, the total number of identified species was 360. Of these, 47 species are new for Svalbard waters. Bryozoa was the most diverse group. Biogeographic composition revealed features of both Arctic and sub-Arctic properties of the fauna. Species richness, frequency of species occurrence, mean abundance and biomass generally decreased towards the tidal glaciers in inner Kongsfjorden. Among eight environmental factors, depth was most important for explaining variance in the composition of the zoobenthos. The diversity was consistently low at shallow depths, whereas the non-linear patterns of species composition of deeper samples indicated a transitional zone between surface and deeper water masses at 15–20 m depth. Groups of “colonial” and “non-colonial” species differed in diversity, biogeographic composition and distribution by location and depth as well as in relation to other environmental factors. “Non-colonial” species made a greater contribution than “colonial” species to total species richness, total occurrence and biomass in samples, and were more influenced by the depth gradient. Biogeographic composition was sensitive to variation of zoobenthic characteristics over the studied depth range. A list of recorded species and a description of sampling sites are presented

    Hundreds of genetic barcodes of the species-rich hydroid superfamily Plumularioidea (Cnidaria, Medusozoa) provide a guide toward more reliable taxonomy

    Get PDF
    Marine hydroids are important benthic components of shallow and deep waters worldwide, but their taxonomy is controversial because diagnostic morphological characters to categorize taxa are limited. Their genetic relationships are also little investigated. We tested taxonomic hypotheses within the highly speciose superfamily Plumularioidea by integrating a classical morphological approach with DNA barcoding of the 16S and COI mitochondrial markers for 659 and 196 specimens of Plumularioidea, respectively. Adding Genbank sequences, we inferred systematic relationships among 1,114 plumularioids, corresponding to 123 nominal species and 17 novel morphospecies in five families of Plumularioidea. We found considerable inconsistencies in the systematics of nominal families, genera and species. The families Kirchenpaueriidae and Plumulariidae were polyphyletic and the Halopterididae paraphyletic. Most genera of Plumularioidea are not monophyletic. Species diversity is considerably underestimated. Within our study, at least 10% of the morphologically-distinctive morphospecies are undescribed, and about 40% of the overall species richness is represented by cryptic species. Convergent evolution and morphological plasticity therefore blur systematic relationships. Additionally, cryptic taxa occur frequently in sympatry or parapatry, complicating correspondence with type material of described species. Sometimes conspecificity of different morphotypes was found. The taxonomy of hydroids requires continued comprehensive revision.This work relied on several hydrozoan samples collected from various sites, with the aid of many people. Supplementary Table S1 refers many of the people involved in the collection and/or preservation of the samples. C.J.M. acknowledges his great buddy-divers Jaime N.-Ruiz (CIMAR, Univ. Costa Rica), Axel Calderon, Nathaniel Chu, Eleni Petrou (STRI, Smiths. Inst.), Hanae Spathias, Karen Koltes (at the Belize station, Smith. Inst.), Freya Sommer (Hopkins Marine Station), Remilson Ferreira ('Costa Norte', Sao Tome), Frederico Cardigos (DOP, Univ. Azores) and others that assisted the dives. C.J.M. also acknowledges Rita Castillo (CIMAR, Univ. Costa Rica), Plinio Gondola, Ligia Calderon, Laura Geyer, Maria Castillo (STRI, Smiths. Inst.), Gregory Ruiz (SERC, Smiths. Inst.), Paul Greenhall, William Keel (MSC, Smith. Inst.), Manuel Enes, Valentina Matos (IMAR/DOP, Univ. Azores), Filipe Porteiro, Joao Goncalves (OKEANOS/IMAR, Univ. Azores), Marina Cunha, Ascensao Ravara (CESAM, Univ. Aveiro), Shirley Pomponi (Harbor Branch, Florida Atlantic Univ.), Estrela Matilde (Fundacao Principe Trust), Monica Albuquerque, Ines Tojeira (EMEPC), Diana Carvalho (Nat. Mus. Nat. Hist., Lisbon) and many others colleagues that facilitated the morphologic classifications and deposition of the samples. Peter Schuchert (Mus. d'Hist. Nat. Geneve) kindly provided some DNA extractes. Todd Kincaid and his team of GUE divers (Project Baseline - Azores) collected valuable samples from unusual depths. Joana Boavida (CIIMAR, Univ. Algarve) facilitated some samples of the 'DeepReefs' project. Jim Drewery (Marine Scotland Science Inst.) also provided few samples. Dale Calder (Royal Ontario Museum) provided some bibliography to C.J.M. and discussed/resolved some dubios taxonomic classifications. Colleagues at the L.A.B. (NMNH, Smith. Inst.) were very supportive. The APC fees for open access publication were supported by a program of the Regional Government of the Azores ("Apoio ao funcionamento e gestao dos centros de I&D regionais: 2018 - DRCT-medida 1

    Trends in the Diversity, Distribution and Life History Strategy of Arctic Hydrozoa (Cnidaria)

    No full text
    <div><p>This is the first attempt to compile a comprehensive and updated species list for Hydrozoa in the Arctic, encompassing both hydroid and medusa stages and including Siphonophorae. We address the hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic by Hydrozoa after the Last Glacial Maximum. Presence-absence data of Hydrozoa in the Arctic were prepared on the basis of historical and present-day literature. The Arctic was divided into ecoregions. Species were grouped into distributional categories according to their worldwide occurrences. Each species was classified according to life history strategy. The similarity of species composition among regions was calculated with the Bray-Curtis index. Average and variation in taxonomic distinctness were used to measure diversity at the taxonomic level. A total of 268 species were recorded. Arctic-boreal species were the most common and dominated each studied region. Nineteen percent of species were restricted to the Arctic. There was a predominance of benthic species over holo- and meroplanktonic species. Arctic, Arctic-Boreal and Boreal species were mostly benthic, while widely distributed species more frequently possessed a pelagic stage. Our results support hypothesis that the presence of a pelagic stage (holo- or meroplanktonic) was not necessary to successfully recolonize the Arctic. The predominance of benthic Hydrozoa suggests that the Arctic could have been colonised after the Last Glacial Maximum by hydroids rafting on floating substrata or recolonising from glacial refugia.</p></div

    The Arctic region.

    No full text
    <p>An Azimuthal Equal-Area projection of the Arctic region, using the Arctic Circle (66° 33.5' N) as the boundary of the Arctic—approximately the limit of the midnight sun and polar night. All significant shelf seas are named, plus some seas that extend south of the Arctic Circle (eg. the Bering Sea). HAA identifies the Canadian High Arctic Archipelago. The Lomonosov Ridge crosses the Arctic Ocean near the North Pole (NP) and divides the Arctic's two main deep basins—the Canadian and Eurasian Basins. This aseismic ridge is 1 800km long, and rises 1 800–3 400m above the basin floor.</p

    Dendrogram resulting from cluster analysis of the Bray—Curtis similarities in Arctic and subarctic water basins.

    No full text
    <p>Analysis based on presence/absence data of hydrozoan species list. Abbreviations of regions: I—Iceland, WG—West Greenland, EG—East Greenland, BS—Barents Sea, WS—White Sea, KS—Kara Sea, LS—Laptev Sea, ESS—East Siberian Sea, CHS—Chukchi Sea, A&BS—Alaska & Bering Sea, BS&HAA—Beaufort Sea & High Arctic Archipelago, EC—East Canada, HC—Hudson Complex, CPB—Central Polar Basin.</p

    Funnel plot for simulated average taxonomic distinctness (AvTD) (a) and variation in taxonomic distinctness (VarTD) (b).

    No full text
    <p>Funnel plot is based on presence/absence data of Hydrozoa against observed number of species, in each Arctic region (black points). Thick line denotes AvTD for the master list. Thin lines indicate 95% probability limits for simulated AvTD. Abbreviations of regions: I—Iceland, WG—West Greenland, EG—East Greenland, BS—Barents Sea, WS—White Sea, KS—Kara Sea, LS—Laptev Sea, ESS—East Siberian Sea, CHS—Chukchi Sea, A&BS—Alaska & Bering Sea, BS&HAA—Beaufort Sea & High Arctic Archipelago, EC—East Canada, HC—Hudson Complex, CPB—Central Polar Basin.</p

    Proportion of Hydrozoa life history strategy by zoogeographical groups.

    No full text
    <p>Proportion of Hydrozoa life history strategy by zoogeographical groups.</p

    Number of Hydrozoa taxa (N), average taxonomic distinctness (TD) and variation in taxonomic distinctness (VarTD) in the Arctic regions.

    No full text
    <p>Number of Hydrozoa taxa (N), average taxonomic distinctness (TD) and variation in taxonomic distinctness (VarTD) in the Arctic regions.</p
    corecore