51 research outputs found

    Synergistic Computational–Experimental Discovery of Highly Selective PtCu Nanocluster Catalysts for Acetylene Semihydrogenation

    Get PDF
    Semihydrogenation of acetylene (SHA) in an ethylene-rich stream is an important process for polymer industries. Presently, Pd-based catalysts have demonstrated good acetylene conversion (XC2H2), however, at the expense of ethylene selectivity (SC2H4). In this study, we have employed a systematic approach using density functional theory (DFT) to identify the best catalyst in a Cu–Pt system. The DFT results showed that with a 55 atom system at ∼1.1 Pt/Cu ratio for Pt28Cu27/Al2O3, the d-band center shifted −2.2 eV relative to the Fermi level leading to electron-saturated Pt, which allows only adsorption of ethylene via a π-bond, resulting in theoretical 99.7% SC2H4 at nearly complete XC2H2. Based on the DFT results, Pt–Cu/Al2O3 (PtCu) and Pt/Al2O3 (Pt) nanocatalysts were synthesized via cluster beam deposition (CBD), and their properties and activities were correlated with the computational predictions. For bimetallic PtCu, the electron microscopy results show the formation of alloys. The bimetallic PtCu catalyst closely mimics the DFT predictions in terms of both electronic structure, as confirmed by X-ray photoelectron spectroscopy, and catalytic activity. The alloying of Pt with Cu was responsible for the high C2H4 specific yield resulting from electron transfer between Cu and Pt, thus making PtCu a promising catalyst for SHA

    ajnmmi1106003

    Get PDF
    Abstract: Molecular imaging allows direct visualization of targets and characterization of cellular pathways, as long as a high signal/background ratio can be achieved, which requires a sufficient amount of probes to accumulate in the imaging region. The Asn-Gly-Arg (NGR) tripeptide selected by phage display can specifically target tumor vasculature. Recognizing the aminopeptidase N (APN or CD13) receptor on the membrane of tumor cells, the peptide can be further internalized into cytoplasma by the endosomal pathway. Hence NGR can serve as an ideal candidate for tumor imaging, once it is conjugated with fluorescent or radiolabeled imaging probes. Herein, we highlight some recent developments of NGR peptide based imaging of tumors. Although still in the preliminary stage, some NGR probes have shown potential as promising agents in future clinical applications

    Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    Full text link
    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor−acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells

    An immunosuppressive antibody-drug conjugate.

    No full text

    Consensus Model of Mechanophore Sensors for Biological Force Measurement

    No full text
    Cellular forces regulate an untold spectrum of living processes such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore. These sensors are characterized using a consensus approach combining equilibrium and steered QM/MM molecular dynamics models to capture the chemical, mechanical, and conformational transitions underlying force activation thresholds on a pico-to-nanonewton scale. We find that chemical modification of the mechanophore and variation of its biomolecular tethers can tune the rate-determining step for fluorophore release and adjust the mechanochemical activation barrier. The models offer a new molecular framework for calibrated, programmable biomolecular force reporting within the live-cell regime, opening new opportunities to study mechanical phenomena in biological system
    • …
    corecore