101 research outputs found
The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis.
Cutaneous leishmaniases have persisted for centuries as chronically disfiguring parasitic infections affecting millions of people across the subtropics. Symptoms range from the more prevalent single, self-healing cutaneous lesion to a persistent, metastatic disease, where ulcerations and granulomatous nodules can affect multiple secondary sites of the skin and delicate facial mucosa, even sometimes diffusing throughout the cutaneous system as a papular rash. The basis for such diverse pathologies is multifactorial, ranging from parasite phylogeny to host immunocompetence and various environmental factors. Although complex, these pathologies often prey on weaknesses in the innate immune system and its pattern recognition receptors. This review explores the observed and potential associations among the multifactorial perpetrators of infectious metastasis and components of the innate immune system
Antiviral screening identifies adenosine analogs targeting the endogenous dsRNA Leishmania RNA virus 1 (LRV1) pathogenicity factor.
The endogenous double-stranded RNA (dsRNA) virus Leishmaniavirus (LRV1) has been implicated as a pathogenicity factor for leishmaniasis in rodent models and human disease, and associated with drug-treatment failures in Leishmania braziliensis and Leishmania guyanensis infections. Thus, methods targeting LRV1 could have therapeutic benefit. Here we screened a panel of antivirals for parasite and LRV1 inhibition, focusing on nucleoside analogs to capitalize on the highly active salvage pathways of Leishmania, which are purine auxotrophs. Applying a capsid flow cytometry assay, we identified two 2'-C-methyladenosine analogs showing selective inhibition of LRV1. Treatment resulted in loss of LRV1 with first-order kinetics, as expected for random virus segregation, and elimination within six cell doublings, consistent with a measured LRV1 copy number of about 15. Viral loss was specific to antiviral nucleoside treatment and not induced by growth inhibitors, in contrast to fungal dsRNA viruses. Comparisons of drug-treated LRV1 <sup>+</sup> and LRV1 <sup>-</sup> lines recapitulated LRV1-dependent pathology and parasite replication in mouse infections, and cytokine secretion in macrophage infections. Agents targeting Totiviridae have not been described previously, nor are there many examples of inhibitors acting against dsRNA viruses more generally. The compounds identified here provide a key proof-of-principle in support of further studies identifying efficacious antivirals for use in in vivo studies of LRV1-mediated virulence
Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response.
BACKGROUND: Infection with Leishmania parasites causes mainly cutaneous lesions at the site of the sand fly bite. Inflammatory metastatic forms have been reported with Leishmania species such as L. braziliensis, guyanensis and aethiopica. Little is known about the factors underlying such exacerbated clinical presentations. Leishmania RNA virus (LRV) is mainly found within South American Leishmania braziliensis and guyanensis. In a mouse model of L. guyanensis infection, its presence is responsible for an hyper-inflammatory response driven by the recognition of the viral dsRNA genome by the host Toll-like Receptor 3 leading to an exacerbation of the disease. In one instance, LRV was reported outside of South America, namely in the L. major ASKH strain from Turkmenistan, suggesting that LRV appeared before the divergence of Leishmania subgenera. LRV presence inside Leishmania parasites could be one of the factors implicated in disease severity, providing rationale for LRV screening in L. aethiopica.
METHODOLOGY/PRINCIPAL FINDINGS: A new LRV member was identified in four L. aethiopica strains (LRV-Lae). Three LRV-Lae genomes were sequenced and compared to L. guyanensis LRV1 and L. major LRV2. LRV-Lae more closely resembled LRV2. Despite their similar genomic organization, a notable difference was observed in the region where the capsid protein and viral polymerase open reading frames overlap, with a unique -1 situation in LRV-Lae. In vitro infection of murine macrophages showed that LRV-Lae induced a TLR3-dependent inflammatory response as previously observed for LRV1.
CONCLUSIONS/SIGNIFICANCE: In this study, we report the presence of an immunogenic dsRNA virus in L. aethiopica human isolates. This is the first observation of LRV in Africa, and together with the unique description of LRV2 in Turkmenistan, it confirmed that LRV was present before the divergence of the L. (Leishmania) and (Viannia) subgenera. The potential implication of LRV-Lae on disease severity due to L. aethiopica infections is discussed
MyD88 and TLR9 dependent immune responses mediate resistance to Leishmania guyanensis infections, irrespective of Leishmania RNA virus burden.
Infections with Leishmania parasites of the Leishmania Viannia subgenus give rise to both localized cutaneous (CL), and metastatic leishmaniasis. Metastasizing disease forms including disseminated (DCL) and mutocutaneous (MCL) leishmaniasis result from parasitic dissemination and lesion formation at sites distal to infection and have increased inflammatory responses. The presence of Leishmania RNA virus (LRV) in L. guyanensis parasites contributes to the exacerbation of disease and impacts inflammatory responses via activation of TLR3 by the viral dsRNA. In this study we investigated other innate immune response adaptor protein modulators and demonstrated that both MyD88 and TLR9 played a crucial role in the development of Th1-dependent healing responses against L. guyanensis parasites regardless of their LRV status. The absence of MyD88- or TLR9-dependent signaling pathways resulted in increased Th2 associated cytokines (IL-4 and IL-13), which was correlated with low transcript levels of IL-12p40. The reliance of IL-12 was further confirmed in IL12AB-/- mice, which were completely susceptible to infection. Protection to L. guyanensis infection driven by MyD88- and TLR9-dependent immune responses arises independently to those induced due to high LRV burden within the parasites
Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression.
Limited clinical benefit has been demonstrated for chimeric antigen receptor (CAR) therapy of solid tumors, but coengineering strategies to generate so-called fourth-generation (4G) CAR-T cells are advancing toward overcoming barriers in the tumor microenvironment (TME) for improved responses. In large part due to technical challenges, there are relatively few preclinical CAR therapy studies in immunocompetent, syngeneic tumor-bearing mice. Here, we describe optimized methods for the efficient retroviral transduction and expansion of murine T lymphocytes of a predominantly central memory T cell (TCM cell) phenotype. We present a bicistronic retroviral vector encoding both a tumor vasculature-targeted CAR and murine interleukin-15 (mIL-15), conferring enhanced effector functions, engraftment, tumor control, and TME reprogramming, including NK cell activation and reduced presence of M2 macrophages. The 4G-CAR-T cells coexpressing mIL-15 were further characterized by up-regulation of the antiapoptotic marker Bcl-2 and lower cell-surface expression of the inhibitory receptor PD-1. Overall, this work introduces robust tools for the development and evaluation of 4G-CAR-T cells in immunocompetent mice, an important step toward the acceleration of effective therapies reaching the clinic
Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis.
The presence of the endogenous <i>Leishmania</i> RNA virus 1 (LRV1) replicating stably within some parasite species has been associated with the development of more severe forms of leishmaniasis and relapses after drug treatment in humans. Here, we show that the disease-exacerbatory role of LRV1 relies on type I IFN (type I IFNs) production by macrophages and signaling in vivo. Moreover, infecting mice with the LRV1-cured <i>Leishmania guyanensis</i> ( <i>LgyLRV1</i> <sup>
<i>-</i>
</sup> ) strain of parasites followed by type I IFN treatment increased lesion size and parasite burden, quantitatively reproducing the LRV1-bearing ( <i>LgyLRV1</i> <sup>
<i>+</i>
</sup> ) infection phenotype. This finding suggested the possibility that exogenous viral infections could likewise increase pathogenicity, which was tested by coinfecting mice with <i>L. guyanensis</i> and lymphocytic choriomeningitis virus (LCMV), or the sand fly-transmitted arbovirus Toscana virus (TOSV). The type I IFN antiviral response increased the pathology of <i>L. guyanensis</i> infection, accompanied by down-regulation of the IFN-γ receptor normally required for antileishmanial control. Further, LCMV coinfection of IFN-γ-deficient mice promoted parasite dissemination to secondary sites, reproducing the <i>LgyLRV1</i> <sup>
<i>+</i>
</sup> metastatic phenotype. Remarkably, LCMV coinfection of mice that had healed from <i>L. guyanensis</i> infection induced reactivation of disease pathology, overriding the protective adaptive immune response. Our findings establish that type I IFN-dependent responses, arising from endogenous viral elements (dsRNA/LRV1), or exogenous coinfection with IFN-inducing viruses, are able to synergize with New World <i>Leishmania</i> parasites in both primary and relapse infections. Thus, viral infections likely represent a significant risk factor along with parasite and host factors, thereby contributing to the pathological spectrum of human leishmaniasis
Mammalian Innate Immune Response to a Leishmania-Resident RNA Virus Increases Macrophage Survival to Promote Parasite Persistence.
Some strains of the protozoan parasite Leishmania guyanensis (L.g) harbor a viral endosymbiont called Leishmania RNA virus 1 (LRV1). LRV1 recognition by TLR-3 increases parasite burden and lesion swelling in vivo. However, the mechanisms by which anti-viral innate immune responses affect parasitic infection are largely unknown. Upon investigating the mammalian host's response to LRV1, we found that miR-155 was singularly and strongly upregulated in macrophages infected with LRV1+ L.g when compared to LRV1- L.g. LRV1-driven miR-155 expression was dependent on TLR-3/TRIF signaling. Furthermore, LRV1-induced TLR-3 activation promoted parasite persistence by enhancing macrophage survival through Akt activation in a manner partially dependent on miR-155. Pharmacological inhibition of Akt resulted in a decrease in LRV1-mediated macrophage survival and consequently decreased parasite persistence. Consistent with these data, miR-155-deficient mice showed a drastic decrease in LRV1-induced disease severity, and lesional macrophages from these mice displayed reduced levels of Akt phosphorylation
Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response.
Many Leishmania (Viannia) parasites harbor the double-stranded RNA virus Leishmania RNA virus 1 (LRV1), which has been associated with increased disease severity in animal models and humans and with drug treatment failures in humans. Remarkably, LRV1 survives in the presence of an active RNAi pathway, which in many organisms controls RNA viruses. We found significant levels (0.4 to 2.5%) of small RNAs derived from LRV1 in both Leishmania braziliensis and Leishmania guyanensis, mapping across both strands and with properties consistent with Dicer-mediated cleavage of the dsRNA genome. LRV1 lacks cis- or trans-acting RNAi inhibitory activities, suggesting that virus retention must be maintained by a balance between RNAi activity and LRV1 replication. To tilt this balance toward elimination, we targeted LRV1 using long-hairpin/stem-loop constructs similar to those effective against chromosomal genes. LRV1 was completely eliminated, at high efficiency, accompanied by a massive overproduction of LRV1-specific siRNAs, representing as much as 87% of the total. For both L. braziliensis and L. guyanensis, RNAi-derived LRV1-negative lines were no longer able to induce a Toll-like receptor 3-dependent hyperinflammatory cytokine response in infected macrophages. We demonstrate in vitro a role for LRV1 in virulence of L. braziliensis, the Leishmania species responsible for the vast majority of mucocutaneous leishmaniasis cases. These findings establish a targeted method for elimination of LRV1, and potentially of other Leishmania viruses, which will facilitate mechanistic dissection of the role of LRV1-mediated virulence. Moreover, our data establish a third paradigm for RNAi-viral relationships in evolution: one of balance rather than elimination
Exacerbated Leishmaniasis Caused by a Viral Endosymbiont can be Prevented by Immunization with Its Viral Capsid.
Recent studies have shown that a cytoplasmic virus called Leishmaniavirus (LRV) is present in some Leishmania species and acts as a potent innate immunogen, aggravating lesional inflammation and development in mice. In humans, the presence of LRV in Leishmania guyanensis and in L. braziliensis was significantly correlated with poor treatment response and symptomatic relapse. So far, no clinical effort has used LRV for prophylactic purposes. In this context, we designed an original vaccine strategy that targeted LRV nested in Leishmania parasites to prevent virus-related complications. To this end, C57BL/6 mice were immunized with a recombinant LRV1 Leishmania guyanensis viral capsid polypeptide formulated with a T helper 1-polarizing adjuvant. LRV1-vaccinated mice had significant reduction in lesion size and parasite load when subsequently challenged with LRV1+ Leishmania guyanensis parasites. The protection conferred by this immunization could be reproduced in naïve mice via T-cell transfer from vaccinated mice but not by serum transfer. The induction of LRV1 specific T cells secreting IFN-γ was confirmed in vaccinated mice and provided strong evidence that LRV1-specific protection arose via a cell mediated immune response against the LRV1 capsid. Our studies suggest that immunization with LRV1 capsid could be of a preventive benefit in mitigating the elevated pathology associated with LRV1 bearing Leishmania infections and possibly avoiding symptomatic relapses after an initial treatment. This novel anti-endosymbiotic vaccine strategy could be exploited to control other infectious diseases, as similar viral infections are largely prevalent across pathogenic pathogens and could consequently open new vaccine opportunities
- …