5 research outputs found

    Adoption of additive manufacturing technology: drivers, barriers and impacts on upstream supply chain design

    Get PDF
    Purpose – This paper investigates how the adoption of additive manufacturing (AM) impacts upstream supply chain (SC) design and considers the influence of drivers and barriers towards the adoption. Design/methodology/approach – Ten case studies investigating AM adoption by Original Equipment Manufacturers (OEMs) in five industries were conducted. This research is driven by a literature-based framework, and the results are discussed according to the theory of transaction cost economics (TCE). Findings – The case studies reveal four patterns of AM adoption that affect upstream SC design (due to changes in supply base or types of buyer–supplier relationships): make, buy, make and buy and vertical integration. A make or buy decision is based on the level of experience with the technology, on the AM application (rapid manufacturing, prototyping or tooling) and on the need of control over production. Other barriers playing a role in the decision are the high initial investments and the lack of skills and knowledge. Originality/value – This paper shows how different decisions regarding AM adoption result in different SC designs, with a specific focus on the upstream SC and changes in the supply base. This research is among the first to provide empirical evidence on the impact of AM adoption on upstream SCs and to identify drivers of the make or buy decision when adopting AM through the theoretical lens of TC

    Neutrino search from {\gamma}-ray bursts during the prompt and X-ray afterglow phases using 10 years of IceCube public data

    Full text link
    Neutrino emission from gamma-ray bursts (GRBs) has been sought for a long time, and stringent limits on the most accredited GRB emission models have been obtained from IceCube. Multi-wavelength GRB observations of the last decades improved our knowledge of the GRB emission parameters, such as the Lorentz factor and the luminosity, which can vary from one GRB to another by several orders of magnitude. Empirical correlations among such parameters have been identified during the prompt phase, with direct implications on GRB models. In this work, we use the PSLab open-access code, developed for IceCube data analyses, to search for individual neutrino emission from the prompt and afterglow phases of selected GRBs, and for stacking emission from the ensemble of such GRBs. For the afterglow phase, we focus in particular on GRBs with X-ray flares and plateaus. While past stacking searches assumed the same GRB fluence at Earth, we present a stacking scheme based on physically motivated GRB weights. Moreover, we conceive a new methodology for the prompt phase that uses the empirical correlations to infer the GRB luminosity and Lorentz factor, when redshift measurements are not available. We do not observe any significant neutrino excess. Hence, we set constraints on the GRB neutrino fluxes and on relevant GRB parameters, including the magnetic field in the jet. Notably, the baryon loading is found to be <10 for typical GRB prompts, thus disfavoring a baryonic-dominated origin of the GRB ejecta.Comment: Submitted for publication to A&A. Comments are welcom

    Constraints on the Physics of the Prompt Emission from Distant and Energetic Gamma-Ray Burst GRB 220101A

    No full text
    The emission region of gamma-ray bursts (GRBs) is poorly constrained. The uncertainty on the size of the dissipation site spans over 4 orders of magnitude (10(12)-10(17) cm) depending on the unknown energy composition of the GRB jets. The joint multi-band analysis from soft X-rays to high energies (up to similar to 1 GeV) of one of the most energetic and distant GRB 220101A (z = 4.618) allows us for an accurate distinction between prompt and early afterglow emissions. The enormous amount of energy released by GRB 220101A (E-iso asymptotic to 3x10(54) erg) and the spectral cutoff at E-cutoff=85(-26)(+16) MeV observed in the prompt emission spectrum constrains the parameter space of GRB dissipation site. We put stringent constraints on the prompt emission site, requiring 700 &lt; 1160 and R-gamma similar to 4.5x10(13 )cm. Our findings further highlights the difficulty of finding a simple self consistent picture in the electron-synchrotron scenario, favoring instead a proton-synchrotron model, which is also consistent with the observed spectral shape. Deeper measurements of the time variability of GRBs together with accurate high-energy observations (MeV-GeV) would unveil the nature of the prompt emission

    Neutrino search from

    No full text
    Neutrino emission from Îł-ray bursts (GRBs) has been sought for a long time, and stringent limits on the most accredited GRB emission models have been obtained from IceCube. Multiwavelength GRB observations of the last decades have improved our knowledge of the GRB emission parameters, such as the Lorentz factor and the luminosity, which can vary from one GRB to another by several orders of magnitude. Empirical correlations among such parameters have been identified during the prompt phase, with direct implications on GRB models. In this work, we use the PSLab open-access code, developed for IceCube data analyses, to search for individual neutrino emission from the prompt and afterglow phases of selected GRBs, and for stacking emission from the ensemble of such GRBs. For the afterglow phase, we focus on GRBs with X-ray flares and plateaus in particular. While past stacking searches assumed the same GRB fluence at Earth, we present a stacking scheme based on physically motivated GRB weights. Moreover, we conceive a new methodology for the prompt phase that uses the empirical correlations to infer the GRB luminosity and Lorentz factor, when redshift measurements are not available. We do not observe any significant neutrino excess. Hence, we set constraints on the GRB neutrino fluxes and on relevant GRB parameters, including the magnetic field in the jet. Notably, the baryon loading is found to be less than ten for typical GRB jets

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore