305 research outputs found

    A monte carlo simulation study on the dome effect

    Get PDF
    A dome-shape deformation has been found to affect the photogrammetric surface reconstruction in several real and simulated experiments. Its origin has been recognised in inaccurate estimation of the camera parameters and many papers already concentrated on conditions to avoid its development, especially as far as block design is concerned. This paper presents a Monte Carlo simulation to investigate surface reconstruction elevation errors in UAV (Unmanned Aerial Vehicle) photogrammetric blocks. The simulation tests are designed to find out the effect of block shape, camera axis inclination, side-lap, cross strips addition and block control by GCP or GNSS-assisted on the extent of the deformations. The main findings are: i) that GNSS-assisted blocks are generally more robust compared to GCP-controlled ones; ii) that, in GNSS-assisted blocks, unless a mix of nadiral and inclined strips is present, at least one fixed GCP must be provided; iii) that cross strip can conveniently be slimmed to save flight time and processing time; iv) that the effectiveness of GNSS deteriorate as the block shape slims out

    Landslide monitoring by fixed-base terrestrial stereo-photogrammetry

    Get PDF
    Photogrammetry has been used since long to periodically control the evolution of landslides; however, true monitoring is reserved to robotic total stations and ground based InSAR systems, capable of high frequency, high accurate 24h/day response. This paper presents the first results of a fixed terrestrial stereo photogrammetric system developed to monitor shape changes of the scene. The system is made of two reflex cameras, each contained in a sealed box with a control computer that periodically acquires an image and send it to a host computer; once an image pair is received from the two cameras, the DSM of the scene is generated by image correlation and made available for archiving or analysis. The system has been installed and is being tested on the Mont de la Saxe landslide, where several monitoring system are active. Some instability of the camera attitude has been noticed and is corrected with an automated procedure. First comparisons with InSAR data show a good agreement

    Landslide monitoring by fixed-base terrestrial stereo-photogrammetry

    Get PDF
    Photogrammetry has been used since long to periodically control the evolution of landslides; however, true monitoring is reserved to robotic total stations and ground based InSAR systems, capable of high frequency, high accurate 24h/day response. This paper presents the first results of a fixed terrestrial stereo photogrammetric system developed to monitor shape changes of the scene. The system is made of two reflex cameras, each contained in a sealed box with a control computer that periodically acquires an image and send it to a host computer; once an image pair is received from the two cameras, the DSM of the scene is generated by image correlation and made available for archiving or analysis. The system has been installed and is being tested on the Mont de la Saxe landslide, where several monitoring system are active. Some instability of the camera attitude has been noticed and is corrected with an automated procedure. First comparisons with InSAR data show a good agreement

    Integration of historical GIS data in a HBIM system

    Get PDF
    The integration between BIM (Building Information Modeling) and GIS (Geographic Information System) is currently a highly debated research topic. However, the effective integration of the two workflows in a unique information system is still an open research field, especially when dealing with Cultural Heritage (CH). The paper describes an ongoing research on the development of a web information system able to integrate BIM and GIS data, with particular focus on the analysis of the historicized city and its main buildings over time. Three main aspects, in particular, are considered more relevant: (i) conceptual data organization to integrate GIS and BIM in a single environment; (ii) integration of data belonging to different historical periods for analyses over time (4D); (iii) integration into the system of datasets already structured in pre-existing HGIS and HBIM. Most (if not all) of the attributes must be linked with both 2D and 3D entities. The system should be queryable and with the possibility to edit the information regardless of the actual focus of the current user, either if he is more BIM or GIS oriented. This is one of the main requirement for the system not to be just a simple viewer of BIM and GIS data in a unique software environment. The system can manage, from a spatial point of view, different scales of detail, allowing the connection between data from the architectural scale to the territorial one and, from a temporal point of view, data belonging to different periods. All these features have been designed to meet, in particular, the requirements of CH and realize a Historical BIM-GIS system. Besides, the web architecture allows sharing information even between actors with different digital skills, without the need for specific software installed, and ensures portability and access from mobile devices

    UAV BLOCK GEOREFERENCING and CONTROL by ON-BOARD GNSS DATA

    Get PDF
    Unmanned Aerial Vehicles (UAV) are established platforms for photogrammetric surveys in remote areas. They are lightweight, easy to operate and can allow access to remote sites otherwise difficult (or impossible) to be surveyed with other techniques. Very good accuracy can be obtained also with low-cost UAV platforms as far as a reliable ground control is provided. However, placing ground control points (GCP) in these contexts is time consuming and requires accessibility that, in some cases, can be troublesome. RTK-capable UAV platforms are now available at reasonable costs and can overcome most of these problems, requiring just few (or none at all) GCP and still obtaining accurate results. The paper will present a set of experiments performed in cooperation with ARPA VdA (the Environmental Protection Agency of Valle d'Aosta region, Italy) on a test site in the Italian Alps using a Dji Phantom 4 RTK platform. Its goals are: a) compare accuracies obtainable with different calibration procedures (pre- or on-the-job/self-calibration); b) evaluate the accuracy improvements using different number of GCP when the site allows for it; and c) compare alternative positioning modes for camera projection centres determination, (Network RTK, RTK, Post Processing Kinematic and Single Point Positioning)

    Photogrammetric digital surface model reconstruction in extreme low-light environments

    Get PDF
    Digital surface models (DSM) have become one of the main sources of geometrical information for a broad range of applications. Image-based systems typically rely on passive sensors which can represent a strong limitation in several survey activities (e.g., night-time monitoring, underground survey and night surveillance). However, recent progresses in sensor technology allow very high sensitivity which drastically improves low-light image quality by applying innovative noise reduction techniques. This work focuses on the performances of night-time photogrammetric systems devoted to the monitoring of rock slopes. The study investigates the application of different camera settings and their reliability to produce accurate DSM. A total of 672 stereo-pairs acquired with high-sensitivity cameras (Nikon D800 and D810) at three different testing sites were considered. The dataset includes different camera configurations (ISO speed, shutter speed, aperture and image under-/over-exposure). The use of image quality assessment (IQA) methods to evaluate the quality of the images prior to the 3D reconstruction is investigated. The results show that modern high-sensitivity cameras allow the reconstruction of accurate DSM in an extreme low-light environment and, exploiting the correct camera setup, achieving comparable results to daylight acquisitions. This makes imaging sensors extremely versatile for monitoring applications at generally low costs

    Low-cost modular battery emulator for battery management system testing

    Get PDF
    This paper discusses the implementation of a custom battery emulator, specifically designed for functional testing of battery management systems at the end of the production line. Particular care has been paid to make the design of the battery emulator modular and low cost. These characteristics are sought in relatively low-volume medium-power battery applications, where the adoption of conventional hardware-in-the-loop solutions is not viable. A prototype of battery emulator has been implemented, validated, and successfully used to test a battery management system for 12 series-connected cells

    Smart LiFePO4 battery modules in a fast charge application for local public transportation

    Get PDF
    This paper describes the research effort jointly carried out by the University of Pisa and ENEA on electrochemical energy storage systems based on Lithium-ion batteries, particularly the Lithium-Iron-Phosphate cells. In more detail, the paper first illustrates the design and experimental characterization of a family of 12 V modules, each of them provided with an electronic management system, to be used for electric traction. Then, the sizing of the energy storage system for an electric bus providing a service with 'fast and frequent' charge phases is described

    Analysis of low-light and night-time stereo-pair images for photogrammetric reconstruction

    Get PDF
    Rockfalls and rockslides represent a significant risk to human lives and infrastructures because of the high levels of energy involved in the phenomena. Generally, these events occur in accordance to specific environmental conditions, such as temperature variations between day and night, that can contribute to the triggering of structural instabilities in the rock-wall and the detachment of blocks and debris. The monitoring and the geostructural characterization of the wall are required for reducing the potential hazard and to improve the management of the risk at the bottom of the slopes affected by such phenomena. In this context, close range photogrammetry is largely used for the monitoring of high-mountain terrains and rock walls in mine sites allowing for periodic survey of rockfalls and wall movements. This work focuses on the analysis of low-light and night-time images of a fixed-base stereo pair photogrammetry system. The aim is to study the reliability of the images acquired over the night to produce digital surface models (DSMs) for change detection. The images are captured by a high-sensitivity DLSR camera using various settings accounting for different values of ISO, aperture and time of exposure. For each acquisition, the DSM is compared to a photogrammetric reference model produced by images captured in optimal illumination conditions. Results show that, with high level of ISO and maintaining the same grade of aperture, extending the exposure time improves the quality of the point clouds in terms of completeness and accuracy of the photogrammetric models

    Simulation platform for analyzing battery parallelization

    Get PDF
    This paper discusses a simulation platform for predicting the behavior of a battery system comprising two batteries, which can be parallelized in a controllable way. The model of the battery, the load and the parallelization algorithm is developed and simulated in MATLAB® Simulink environment. The simulation platform and the proposed parallelization algorithm are validated in a real gardening application. The simulation results prove to be useful for further investigation into the benefits of battery parallelization in terms of reduced battery aging and improved energy efficiency
    corecore