26 research outputs found

    The translational repressor 4E-BP mediates hypoxia-induced defects in myotome cells.

    No full text
    International audienceCell growth, proliferation, differentiation and survival are influenced by the availability of oxygen. The effect of hypoxia on embryonic cells and the underlying molecular mechanisms to maintain cellular viability are still poorly understood. In this study, we show that hypoxia during Xenopus embryogenesis rapidly leads to a significant developmental delay and to cell apoptosis after prolonged exposure. We provide strong evidence that hypoxia does not affect somitogenesis but affects the number of mitotic cells and muscle-specific protein accumulation in somites, without interfering with the expression of MyoD and MRF4 transcription factors. We also demonstrate that hypoxia reversibly decreases Akt phosphorylation and increases the total amount of the translational repressor 4E-BP, in combination with an increase of the 4E-BP associated with eIF4E. Interestingly, the inhibition of PI3-kinase or mTOR, with LY29002 or rapamycin, respectively, triggers the 4E-BP accumulation in Xenopus embryos. Finally, the overexpression of the non-phosphorylatable 4E-BP protein induces, similar to hypoxia, a decrease in mitotic cells and a decrease in muscle-specific protein accumulation in somites. Taken together, our studies suggest that 4E-BP plays a central role under hypoxia in promoting the cap-independent translation at the expense of cap-dependent translation and triggers specific defects in muscle development

    Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development

    Get PDF
    AbstractThe respective role of Pax2 and Pax8 in early kidney development in vertebrates is poorly understood. In this report, we have studied the roles of Pax8 and Pax2 in Xenopus pronephros development using a loss-of-function approach. Our results highlight a differential requirement of these two transcription factors for proper pronephros formation. Pax8 is necessary for the earliest steps of pronephric development and its depletion leads to a complete absence of pronephric tubule. Pax2 is required after the establishment of the tubule pronephric anlage, for the expression of several terminal differentiation markers of the pronephric tubule. Neither Pax2 nor Pax8 is essential to glomus development. We further show that Pax8 controls hnf1b, but not lhx1 and Osr2, expression in the kidney field as soon as the mid-neurula stage. Pax8 is also required for cell proliferation of pronephric precursors in the kidney field. It may exert its action through the wnt/beta-catenin pathway since activation of this pathway can rescue MoPax8 induced proliferation defect and Pax8 regulates expression of the wnt pathway components, dvl1 and sfrp3. Finally, we observed that loss of pronephros in Pax8 morphants correlates with an expanded vascular/blood gene expression domain indicating that Pax8 function is important to delimit the blood/endothelial genes expression domain in the anterior part of the dorso-lateral plate

    TOPAZ1, a Novel Germ Cell-Specific Expressed Gene Conserved during Evolution across Vertebrates

    Get PDF
    BACKGROUND: We had previously reported that the Suppression Subtractive Hybridization (SSH) approach was relevant for the isolation of new mammalian genes involved in oogenesis and early follicle development. Some of these transcripts might be potential new oocyte and granulosa cell markers. We have now characterized one of them, named TOPAZ1 for the Testis and Ovary-specific PAZ domain gene. PRINCIPAL FINDINGS: Sheep and mouse TOPAZ1 mRNA have 4,803 bp and 4,962 bp open reading frames (20 exons), respectively, and encode putative TOPAZ1 proteins containing 1,600 and 1653 amino acids. They possess PAZ and CCCH domains. In sheep, TOPAZ1 mRNA is preferentially expressed in females during fetal life with a peak during prophase I of meiosis, and in males during adulthood. In the mouse, Topaz1 is a germ cell-specific gene. TOPAZ1 protein is highly conserved in vertebrates and specifically expressed in mouse and sheep gonads. It is localized in the cytoplasm of germ cells from the sheep fetal ovary and mouse adult testis. CONCLUSIONS: We have identified a novel PAZ-domain protein that is abundantly expressed in the gonads during germ cell meiosis. The expression pattern of TOPAZ1, and its high degree of conservation, suggests that it may play an important role in germ cell development. Further characterization of TOPAZ1 may elucidate the mechanisms involved in gametogenesis, and particularly in the RNA silencing process in the germ lin

    Facteurs de traduction et mécanismes de surveillance du cycle cellulaire

    No full text
    Cell division is a highly regulated process and when a problem occurs, the cell cycle checkpoints are activated. When cell cycle checkpoints are defective, pathological disease, as cancer, can occur. The implication of translation factors during checkpoints activation was studied in sea urchin embryo model. The work realized during this PhD demonstrated a functional DNA damage checkpoint during the first cell division of sea urchin embryo. The eIF2α phosphorylation was shown to be implicated in translational activation after fertilization and in translation inhibition after MMS treatment, a DNA alkylating molecule. This study shows an expression of functional 4E-BP protein, a translational inhibitor, after induction of DNA damages by radiomimetic drug (bleomycin), hypoxic stress or heavy metal (ChromeIII) treatment in sea urchin embryo. We demonstrated that, after MMS treatment, which doesn’t induced 4E-BP expression, the eIF4G protein was modified, degraded or cleaved as a function of drug dose. Our work support interest and knowledge on translational factors implication when checkpoint was mobilisated after DNA damages or cellular stress in sea urchin embryo. These results are a starting point to study new regulations of translational factors eIF4E, eIF4G and 4E-BP when cell is directed toward survival or cell death pathways.La division cellulaire est un processus physiologique extrĂȘmement rĂ©gulĂ© et la moindre anomalie entraĂźne la mobilisation de points de surveillance. Lorsque qu’un problĂšme survient dans le contrĂŽle de la division, cela peut entraĂźner l’apparition de pathologie grave comme le cancer. L’étude de l’implication des facteurs de traduction lors de la mobilisation des points de surveillance a Ă©tĂ© rĂ©alisĂ©e en profitant des atouts du modĂšle de l’embryon d’oursin. Les travaux rĂ©alisĂ©s au cours de cette thĂšse, ont montrĂ© que le point de surveillance de l'ADN endommagĂ© (arrĂȘt du cycle-rĂ©paration-apoptose) Ă©tait fonctionnel dĂšs le premier cycle suivant la fĂ©condation dans l'embryon d'oursin. Nous avons Ă©galement mis en Ă©vidence que dans les embryons d'oursin, la phosphorylation de la protĂ©ine eIF2α est impliquĂ©e dans l'augmentation de synthĂšse protĂ©ique induite par la fĂ©condation et dans l’inhibition de synthĂšse protĂ©ique induite par un traitement avec une molĂ©cule alkylant l’ADN, le MMS. Nos Ă©tudes montrent que la protĂ©ine 4E-BP, un inhibiteur de la traduction, est surexprimĂ©e et fonctionnelle en rĂ©ponse Ă  la mobilisation du point de surveillance de l'ADN endommagĂ© par une molĂ©cule radiomimĂ©tique (blĂ©omycine), Ă  un stress hypoxique ou lors de l'exposition Ă  un mĂ©tal lourd (ChromeIII) dans l’embryon d’oursin. Enfin, nous dĂ©montrons que lors du traitement des embryons par le MMS, qui n'induit pas de surexpression de 4E-BP, la protĂ©ine eIF4G est modifiĂ©e, dĂ©gradĂ©e ou clivĂ©e selon la dose de drogue utilisĂ©e. Nos Ă©tudes renforcent l’intĂ©rĂȘt et les connaissances sur l’implication des facteurs de traduction lors de la mobilisation des points de surveillance du cycle cellulaire dans l’embryon d’oursin mis en situation de stress et/ou d'endommagement de l'ADN. Ainsi les rĂ©sultats obtenus permettent de poser les bases de nouvelles rĂ©gulations des facteurs de traduction eIF4E et eIF4G et de leur inhibiteur 4E-BP permettant de contrĂŽler la synthĂšse protĂ©ique lorsque la cellule va s'engager dans la voie de survie ou de mort cellulaire

    Characterization of potential TRPP2 regulating proteins in early Xenopus embryos

    No full text
    International audienceTransient receptor potential cation channel‐2 (TRPP2) is a nonspecific Ca2+‐dependent cation channel with versatile functions including control of extracellular calcium entry at the plasma membrane, release of intracellular calcium ([Ca2+]i) from internal stores of endoplasmic reticulum, and calcium‐dependent mechanosensation in the primary cilium. In early Xenopus embryos, TRPP2 is expressed in cilia of the gastrocoel roof plate (GRP) involved in the establishment of left‐right asymmetry, and in nonciliated kidney field (KF) cells, where it plays a central role in early specification of nephron tubule cells dependent on [Ca2+]i signaling. Identification of proteins binding to TRPP2 in embryo cells can provide interesting clues about the mechanisms involved in its regulation during these various processes. Using mass spectrometry, we have therefore characterized proteins from late gastrula/early neurula stage embryos coimmunoprecipitating with TRPP2. Binding of three of these proteins, golgin A2, protein kinase‐D1, and disheveled‐2 has been confirmed by immunoblotting analysis of TRPP2‐coprecipitated proteins. Expression analysis of the genes, respectively, encoding these proteins, golga2, prkd1, and dvl2 indicates that they are likely to play a role in these two regions. Golga2 and prkd1 are expressed at later stage in the developing pronephric tubule where golgin A2 and protein kinase‐D1 might also interact with TRPP2. Colocalization experiments using exogenously expressed fluorescent versions of TRPP2 and dvl2 in GRP and KF reveal that these two proteins are generally not coexpressed, and only colocalized in discrete region of cells. This was observed in KF cells, but does not appear to occur in the apical ciliated region of GRP cells

    L'embryon d'oursin, le point de surveillance de l'ADN endommagé de la division cellulaire et les mécanismes à l'origine de la cancérisation

    No full text
    La division cellulaire est essentielle pour l'hĂ©rĂ©ditĂ©, le maintien et l'Ă©volution du monde vivant. Lors d'une lĂ©sion de l'ADN au cours de la division cellulaire, les "points de surveillance (= checkpoints) de l'ADN endommagĂ©" exĂ©cutent les fonctions d'arrĂȘt du cycle, de la rĂ©paration de l'ADN et de l'orientation vers la mort cellulaire par apoptose lorsqu'une rĂ©paration est impossible. À propos de l'origine des cancers, deux concepts majeurs se renforcent de jour en jour : les cancers s'initient par un dysfonctionnement des points de surveillance de l'ADN endommagĂ© et les cancers naissent de la transformation de cellules souches "normales" en cellules souches "cancĂ©reuses". Ce dernier concept modifie la dĂ©finition mĂȘme des cancers puisqu'il est dĂ©montrĂ© qu'une cellule souche "cancĂ©reuse" suffit pour gĂ©nĂ©rer la tumeur, bien avant les signes cliniques de la maladie. Le dĂ©veloppement prĂ©coce de l'oursin reprĂ©sente un excellent modĂšle expĂ©rimental pour apprĂ©hender l'analyse du fonctionnement des points de surveillance du cycle de division, car il prĂ©sente l'ensemble des Ă©lĂ©ments de rĂ©gulation, comme le montrent l'analyse du gĂ©nome complet et l'existence d'un point de surveillance de l'ADN endommagĂ© tout Ă  fait opĂ©rationnel. Le modĂšle biologique du dĂ©veloppement prĂ©coce de l'oursin, dont l'oeuf constitue une cellule souche par excellence, permet d'aborder l'Ă©tude de l'origine de la cancĂ©risation. Dans le domaine de la toxicologie et de l'implication de nouvelles molĂ©cules en matiĂšre de santĂ©, le modĂšle peut ĂȘtre utilisĂ© pour prĂ©dire le risque de cancer dĂ» Ă  des molĂ©cules ou des combinaisons de molĂ©cules, bien avant le moindre signe clinique de la maladie. C'est ainsi que le risque cancĂ©rigĂšne d'un herbicide d'usage intensif dans le monde, le Roundup (Marque dĂ©posĂ©e par Monsanto Company, Saint-Louis, USA.), dont le glyphosate est l'Ă©lĂ©ment actif, a pu ĂȘtre dĂ©montrĂ©. Le modĂšle expĂ©rimental de l'embryon d'oursin permet ainsi de progresser considĂ©rablement dans la prĂ©vention des cancers par la connaissance des produits Ă  risques et d'envisager de nouvelles formes de diagnostic prĂ©coce de la maladie par la mise en Ă©vidence de marqueurs molĂ©culaires. PrĂ©vention et diagnostic prĂ©coce sont deux des Ă©lĂ©ments dĂ©cisifs de la lutte contre le cancer

    Hypoxia affects muscle cell differentiation: the translational repressor 4E-BP plays a key role

    No full text
    Experimental Biology Meeting, San Diego, CA, APR 21-25, 2012International audienceno abstrac
    corecore