17 research outputs found
A Robust Structural PGN Model for Control of Cell-Cycle Progression Stabilized by Negative Feedbacks
The cell division cycle comprises a sequence of phenomena controlled by a stable and robust genetic network. We applied a probabilistic genetic network (PGN) to construct a hypothetical model with a dynamical behavior displaying the degree of robustness typical of the biological cell cycle. The structure of our PGN model was inspired in well-established biological facts such as the existence of integrator subsystems, negative and positive feedback loops, and redundant signaling pathways. Our model represents genes interactions as stochastic processes and presents strong robustness in the presence of moderate noise and parameters fluctuations. A recently published deterministic yeast cell-cycle model does not perform as well as our PGN model, even upon moderate noise conditions. In addition, self stimulatory mechanisms can give our PGN model the possibility of having a pacemaker activity similar to the observed in the oscillatory embryonic cell cycle
A Robust Structural PGN Model for Control of Cell-Cycle Progression Stabilized by Negative Feedbacks
The cell division cycle comprises a sequence of phenomena controlled by a stable and robust genetic network. We applied a probabilistic genetic network (PGN) to construct a hypothetical model with a dynamical behavior displaying the degree of robustness typical of the biological cell cycle. The structure of our PGN model was inspired in well-established biological facts such as the existence of integrator subsystems, negative and positive feedback loops, and redundant signaling pathways. Our model represents genes interactions as stochastic processes and presents strong robustness in the presence of moderate noise and parameters fluctuations. A recently published deterministic yeast cell-cycle model does not perform as well as our PGN model, even upon moderate noise conditions. In addition, self stimulatory mechanisms can give our PGN model the possibility of having a pacemaker activity similar to the observed in the oscillatory embryonic cell cycle
not available
A área de visão computacional tem como objetivo principal a extração de informação a partir de imagens digitais. Uma das técnicas mais promissoras para abordar este problema é a morfologia matemática. O paradigma central da morfologia matemáticaé a decomposição de operadores elementares da morfologia matemática, que pode ser descrito através de uma linguagem morfológica. Uma implementação da linguagem morfológica é chamada de máquina morfológica e um programa da máquina morfológica éuma implementação de um operador para esta máquina. Assim, resolver um problema de visão computacional por morfologia matemática pode ser entendido como encontrar uma frase da linguagem morfológica (ou equivalentemente, um programa oara umamáquina morfológica), que seja capaz de extrair a informação desejada. Para uma frase da linguagem morfológica, pode existir um número infinito de outras frases (da linguagem morfológica) que são sinônimas, ou seja, diferentes frases podemexpressar um mesmo operador. Um teorema chave em morfologia matemática é o seguinte: qualquer operador entre reticulados completos pode ser decomposto em termos de um conjunto de operadores elementares da morfologia matemática. Este teorema foiprovado pela apresentação de duas expressões canônicas de decomposição, chamadas de sup-decomposição e inf-decomposição, que têm uma estrutura puramente paralela. Neste trabalho apresentamos resultados no sentido de, dada uma representaçãocanônica de um operador entre reticulados que resolve um problema de visão computacional, encontrar uma frase da linguagem morfológica que envolva um número mínimo de operadores elementares. Este problema é extremamente complexo e o abordamosutilizando técnicas de otimização combinatória (como, por exemplo, método de 'branch and bound' e estratégia gulosa). Como a representação canônica tem uma estrutura puramente paralela e representações seqüenciais são usualmente mais ) eficientes em máquinas seqüenciais são usualmente mais eficientes em máquinas seqüenciais convencionais, apresentamos resultados no sentido de mudar a representação canônica para estruturas seqüenciaisThe main aim of computer vision problems is the extraction of information from digital images. A powerful technique to solve these problems is mathematical morphology. A cental paradigm in mathematical morphology is the decomposition of operatorsbetween complete lattices by a set of elementary operators of mathematical morphology. This paradgm can be formalized by the use of a formal language, called the morphological language. An implementation of the morphological machine and aprogram for a morphological machine is just and implementation of an operator for this machine. Therefore, solving a problem of computer vision by mathematical morphology can be understood as finding a phrase of the morphological language (orequivalently, a program for a morphological machine) that can extract the desired information. A phrase of the morphological language can have infinite synonymous phrases (of the morphological languages), that is, different phrases can expressthe same operator. A key theorem in mathematical morphology is the following: any operator between complete latticescan be decomposed by a set of elementary operators of mathematical morphology. This theorem was proved by showing two canonicalstructures called sup-decomposition and inf-decomposition. These canonical structures are strongly parallel. In this work, we formalize and present results for the following problem: given an operator between complete lattices that solves aproblem of computer vision, frim its sup-decomposition (or inf-decomposition), find a synonimous phrase of the morphological language that has a minimal number of elementary operators. This problem is extremely complex and we study it by usingcombinatorial optimization techniques (for example, branch and bound method and greedy strategy). Since the sup-decomposition and inf-decomposition of an operator have parallel structures and sequential representations are usually more efficient for computation in conventional sequential machines, we present techniques for transforming the canonical decompositions into purely sequential decomposition
not available
Neste trabalho estudamos varios problemas sobre circuitos e caminhos em grafos e em digrafos. Consideramos aqui tres classes de problemas: de existencia, de busca e de busca de um minimo. Para cada uma dessas classes investigamos os casos em que o objeto em questao e um circuito par/impar ou um caminho par/impar. Discutimos questoes referentes a complexidade computacional desses problemas e apresentamos algoritmos polinomiais para resolver varios deles. A maioria dos resultados que apresentamos foram coletados da literatura, incluindo uma resenha atualizada sobre o problema da existencia de circuitos pares em digrafos (um problema cuja complexidade computacional continua desconhecida ha vinte anos). Nossa principal contribuicao a este estudo e o desenvolvimento de um algoritmo linear para encontrar circuitos impares em digrafos. Descrevemos tambem algoritmos alternativos (nao necessariamente de melhor complexidade) para alguns dos problemasnot availabl
2: Triangular Decomposition of Images: an Application into Compression
Review of a work submitted to the International Symposium on Mathematical Morphology, 8 (ISMM)
2: A Partitioned Algorithm for the Image Foresting Transform
Review of a work submitted to the International Symposium on Mathematical Morphology, 8 (ISMM)
1: Division of mappings between complete lattices
Review of a work submitted to the International Symposium on Mathematical Morphology, 8 (ISMM)
Classification of regions extracted from scene images by morphological filters in text or non-text using decision tree
We present in this work a new method to classify regions extracted from scene images by morphological filters in text or nontext
region using a decision tree. Our technique can be divided into three parts. Firstly, we extract a set of regions by a robust
scheme based on morphological filters. Then, after a refinement, a set of text attributes is obtained for each region. In the last
step, a decision tree is built in order to classify them as text or non-text regions. Experiments performed using images from
the ICDAR public dataset show that this method is a good alternative for practical problems involving text location in scene
images