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1. Introduction

A very common way to represent objects in Pattern Recognition is to extract their features and
normalize them into vectors in the space R

d. With the objects being represented by points in
the space R

d, the distance among them is an intuitive way to compare their similarities and
differences and it is used in the most methods in Pattern Recognition. For instance, one of the
first and intuitive method in Pattern Recognition that uses this idea is the k-Nearest Neighbor
(k-NN). After that, many other methods have emerged using distances, such as Condensed
Nearest Neighbor (CNN) (Hart, 1968), Learning Vector Quantization (LVQ) (Kohonen et al.,
1988), Nearest Feature Line (NFL) (Li & Lu, 1999), and a new method called Straight Line
Segments (SLS) which takes advantage of some good caracteriscs of LVQ and NFL with low
computational complexity (lower than Support Vector Machines) (Ribeiro & Hashimoto, 2006;
2008). This chapter gives a brief discussion about the mentioned methods and details about
the SLS method. The next section discusses about the k-NN, CNN, LVQ and NFL methods
which are related to the SLS method; Section 3 shows in details the SLS method; Section
4 presents the experimental results using the SLS method; and finally, Section 5 gives the
conclusions about the SLS method and presents some future perspectives.

2. Pattern Recognition Based on Distances

This chapter deals only with supervised Pattern Recognition, that is, given a set of labeled
objects whose labels were assigned by a tutor. It is desirable that a machine learns how to as-
sign labels to new objects as the tutor does. For simplicity, this work is concentrated on binary
classification meaning that there are just two possible values for the labels. For instance, in a
system that needs to recognize whether a tumor is malign or benign, a set of examples (that is,
a set of labeled objects) could be a set of tomographic images where a doctor has already as-
signed a label (malign or benign) to each one. The Pattern Recognition system needs to learn
how to recognize and classify whether a new input image corresponds to a malign or benign
cancer by observing the sample (that is, the set of examples) given by the doctor. To design
a system like this, the designer must choose what machine learning is needed to be used in
order to have a good classification performance for new objects. A set of machines learning
can be represented by a parameterized set of functions FΛ = { fα : R

d �→ {0, 1}, α ∈ Λ}.
Typically, a training algorithm will select the function (or equivalently, the parameter α ∈ Λ)
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which best classifies new objects (points x ∈ R
d) by observing the set of examples. Formally a

supervised Pattern Recogniton system can be defined in the following way (Vapnik, 1999):

1. let FΛ = { fα : R
d �→ {0, 1}, α ∈ Λ} be a set of parameterized functions, where Λ is a

set of parameter vectors;

2. let SN = {(xi, yi) ∈ R
d × {0, 1}, i = 1, 2, . . . , N} be a set of N examples (xi, yi), such

that each vector xi ∈ R
d is drawn independently from a fixed but unknown probability

distribution P(x); for each input vector xi, a supervisor returns an output value (label)
yi ∈ {0, 1} according to a conditional probability distribution P(y | x), also fixed but
unknown;

3. it is desired to find the parameter α
∗ ∈ Λ such that the function fα∗ ∈ F minimizes a

certain error or risk function in order to classify (that is, to give labels y ∈ {0, 1} to) new
query points x ∈ R

d.

To evaluate any supervised Pattern Recognition system is necessary to define a loss function
lα : R

d × {0, 1} �→ R, which represents the penalty given to the machine learning (that is,
the function fα) in case of misclassifying the labeled point (x, y). The most used loss functions
are the absolute and square errors described respectively by Eqs. 1 and 2:

lα(x, y) = | fα(x)− y| , (1)

lα(x, y) = ( fα(x)− y)2. (2)

The loss function gives the penalty for just one misclassification. To obtain the overall behav-
ior of the machine learning it is necessary to compute the functional risk. In case of binary
classification the functional risk can be the probability of the machine learning making a mis-
classification. Eq. 3 describes the functional risk.

R(α) =
∫

lα(x, y) · dP(x, y) (3)

However, in most Pattern Recognition problems, the probability P(x, y) is usually unknown
and the functional risk is estimated by the empirical risk. Let SN = {(xi, yi) : xi ∈ R

d and yi ∈
{0, 1}, i ∈ {0, 1, · · · , N}} be a set of N examples, the empirical risk of the machine learning
with parameter α ∈ Λ with respect to SN is defined by:

RSN
(α) =

1

N

N

∑
i=1

lα(xi, yi). (4)

Since in this chapter we only deal with binary classification, the probability of correct classifi-
cation can be computed by 1 − R(α) and estimated by 1 − RSN

(α). After these formal defini-
tions, we give a brief introduction of some supervised Pattern Recognition methods based on
distances (or metrics).

2.1 The k-Nearest Neighbor Method

The simplicity and intuitive interpretation are the main qualities of the k-Nearest Neighbor (k-
NN) method. According to Devroye et al. (1996), Fix and Hodges presented the k-NN for the
first time in 1951. As the name of the method suggests, the k-NN classifies a point x ∈ R

d with
the class of the majority among the k nearest examples. Usually, k is an odd number to avoid
ties in classification. Interesting fact is that Cover & Hart (1967) proved that the asymptotic
error rate of k-NN is not greater than twice the Bayes error.
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For the most simple implementation of k-NN, the computational complexity is O(N) in both
memory use and execution time. Devroye et al. cited several works that reduce the computa-
tional time complexity, normally by preprocessing the set of examples (Devroye et al., 1996).
For instance, the method proposed in (Friedman et al., 1977) reduces the time complexity to
O(log(N)); in another work (Bandyopadhyay & Maulik, 2002) the sample is sorted according
to the distance with respect to some reference point. These methods reduces the time com-
plexity and maintain the same precision of the original k-NN, but they still maintain the same
memory complexity.
Although the biggest problem of k-NN is the overfitting (that is, the empirical risk can be
much lower than the functional risk), the k-NN method is very often used as a reference for
other methods, because it does not depend on a lot of parameters and, in many cases, does
not depend on the implementation (Jain et al., 2000).

2.2 The Condensed Nearest Neighbor Method

The Condensed Nearest Neighbor (CNN) method (Hart, 1968) aims at keeping in the sample just
the examples that are relevant for classification in order to achieve a reduction on the com-
putational complexity for both memory use and execution time. The training algorithm for
CNN consists in taking out the examples that are not relevant for the classification. Following
this idea, many other authors proposed similar methods to reduce the number of examples
without loss accuracy. Wilson & Martinez (2000) wrote a good review of these methods and
also proposed six more variants.
Although the CNN method tries to reduce the computational time when it is applied to the test
phase, as for k-NN, the overfitting issue is still the biggest problem for CNN and derivative
methods.

2.3 The Learning Vector Quantization Method

Kohonen et al. (1988) proposed a method based on 1-NN, called Learning Vector Quantization
(LVQ), in which (i) a predetermined number of processing units, where each processing unit is
a reference vector in R

d that is associated to one class; (ii) an input vector x is classified with
the nearest reference vector class. Differently from 1-NN, the reference vectors are not the
examples; they are determined by a training algorithm. There are many variants of LVQ, but
basically, their training algorithm consists of two main components: (i) a clustering algorithm
determines the initial position of the reference vectors, and (ii) an iterative algorithm tries to
find the best position for all reference vectors.
After Kohonen’s work, many other variations of LVQ have emerged. For instance, Geva &
Sitte (1991) proposed a new training algorithm for LVQ called Decision Surface Mapping; Ham-
mer & Villmann (2002) presented the Generalized Relevance Learning Vector Quantization method
which is a training and a feature selection algorithm at the same time. Hammer & Villmann
(2002) also compared LVQ to Support Vector Machines (SVM). They emphasize two advantages
of LVQ over SVM: (i) LVQ is more intuitive and easy to implement; and (ii) the computa-
tional complexity od LVQ (on test phase) does not increase with the number of examples as
occurs with SVM (Burges, 1998; Hammer et al., 2004).
The computational complexity of LVQ on test phase are directly proportional to the number
of reference vectors. Therefore, if Nv is the number of the reference vectors chosen by the user,
the computational complexity of LVQ is O(Nv).
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2.4 The Nearest Feature Line Method

Li & Lu (1999) presented a method for face recognition called Nearest Feature Line (NFL). the
main idea behind this method is to define a feature line for each pair of examples of the same
class. A new point x ∈ R

d is classified as the same class of the nearest feature line. This is
a way to virtually increase the information of the sample, interpolating and extrapolating it
from a pair of examples. Therefore, each class with NC examples has NC(NC − 1)/2 feature
lines. If (xi, yi) and (xj, yj) are two examples in the same class, then yi = yj. The feature line

defined by this pair of examples is denoted by ←→xixj. The distance from a point x to the feature

line ←→xixj is defined as (Li & Lu, 1999):

d(x,←→xixj) = ‖x − p‖ (5)

where

p = xi +

〈

(x − xi), (xj − xi)
〉

〈

(xj − xi), (xj − xi)
〉 (xj − xi). (6)

where ‖a‖ is the Euclidean norm of a ∈ R
d and 〈a, b〉 is the scalar product between a ∈ R

d

and b ∈ R
d.

It was shown that this method has a good classification performance when the number of ex-
amples is small and the feature space has a high dimension (Li & Lu, 1999). The disadvantage
of this method is its high computational complexity and, depending on the dataset, it could
make many misclassifications simply because it exaggerates on interpolation and extrapola-
tion.
Based on NFL, other methods have emerged, for instance, the Extended Nearest Feature Line
method (Zhou et al., 2004); Center-based Nearest Neighbor (Gao & Wang, 2007) and Rectified
Nearest Feature Line (Du & Chen, 2007). Those methods improved the idea behind the NFL,
however they still have a high computational complexity.

3. Pattern Recognition Method Based on Straight Line Segments

Although the Pattern Recognition method based on Straight Line Segments (SLS) presented in
this section was not designed based on any of the methods described in the previous sec-
tion, it uses similar ideas. For example, the SLS method uses straight line segments instead
of reference vectors of LVQ; and the extremities of the straight line segments do not need
to be examples like in NFL and derivatives. Thus, SLS obtains the low computational time
complexity of LVQ and uses the interpolation capacity of NFL. So, the SLS method could be
considered as an extension of LVQ with some ideas of NFL.
Let p, q ∈ R

d+1. The straight line segment with extremities at p and q, denoted pq, is the
closed segment of a line in R

d+1 with endpoints p and q. More formally,

pq = {x ∈ R
d+1 : x = p + λ · (q − p), 0 ≤ λ ≤ 1}. (7)

The set of all possible straight line segments is denoted by PQ = {pq : p, q ∈ R
d+1}.

Given a point x ∈ R
d, the extension of x to R

d+1, denoted by xe ∈ R
d+1, is the point xe = (x, 0),

that is, the point x is extended to R
d+1 by adding one more coordinate with zero value. Given

a point x ∈ R
d and a straight line segment pq, with p, q ∈ R

d+1, the pseudo-distance between
x and pq is the function pdist : R

d × PQ �→ R defined as:
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pdist(x, pq) =
dist(xe, p) + dist(xe, q)− dist(p, q)

2
, (8)

where dist(a, b) denotes the Euclidean distance between points a ∈ R
d+1 and b ∈ R

d+1. Note
that pdist is not the Euclidean distance between a point x ∈ R

d and a straight line segment pq,
but it satisfies the following reasonable axioms:

1. If p = q, then pdist(x, pq) = dist(x, p).

2. If x ∈ pq, then pdist(x, pq) = 0.

3. If x /∈ pq, then pdist(x, pq) > 0.

Let L be the collection of all possible sets of straight line segments, that is, L = {L : L ⊆ PQ}.
Given two sets the straight line segments, L0 and L1, (that is, L0, L1 ∈ L), if L = (L0, L1) ∈ L

2,
then we define the discriminant function T : R

d × L
2 �→ R as

T(x,L) = lim
ǫ→0

(

∑
pq∈L1

1

pdist(x, pq) + ǫ

− ∑
pq∈L0

1

pdist(x, pq) + ǫ

)

. (9)

Finally, given a pair of sets of straight line segments L = (L0, L1) ∈ L
2, we define the classifi-

cation function yL : R
d �→ [0, 1] as

yL(x) =
1

1 + e−g·T(x,L)
, (10)

where g is a positive real constant. Note that, if ∃paqa ∈ L1 such that pdist(x, paqa) → 0
and pdist(x, pbqb) ≫ 0 such that ∀pbqb ∈ L0, then the first term in Eq. 9 tends to +∞.
Consequently T(x,L) → +∞ and, therefore, yL(x) → 1. On the other hand, if ∃pbqb ∈
L0 such that pdist(x, pbqb) → 0 and pdist(x, paqa) ≫ 0 such that ∀paqa ∈ L1, then the second
term in Eq. 9 tends to −∞. Consequently T(x,L) → −∞ and, therefore, yL(x) → 0. Further-
more, when both terms in Eq. 9 are equal, T(x,L) → 0 and yL(x) → 0.5. Thus, in the case of
binary classification, the class of a point x ∈ R

d can be obtained by thresholding the function
yL(x) at level 0.5 in the following way: the class of point x is 0 if and only if yL(x) ≤ 0.5.
Therefore, the decision boundary that separates classes 0 from 1 depends on the choice of pair
of sets of straight line segments L = (L0, L1) ∈ L

2. Observe that the SLS method has a dif-
ference of all other methods mentioned in previous section: while points x ∈ R

d, the straight
line segments are in R

d+1. It gives more flexibility for the decision boundary.
Although this chapter does not deal with regression, in order to show how the classification
function yL(x) can be versatile, we illustrate that yL(x) can be used to approximate four dif-
ferent functions fi : [0, 1] �→ [0, 1], i ∈ {1, 2, 3, 4}, with only a few straight line segments. The
four functions are the following:

f1(x) =
1

4
+

x

2
; 0 ≤ x ≤ 1; (11)

f2(x) =



















1 0 ≤ x < 0.25

0 0.25 ≤ x < 0, 5

1 0.5 ≤ x < 0.75

0 0.75 ≤ x ≤ 1;

(12)

f3(x) = 0.5 + 0.4 sin(2 · π · x); 0 ≤ x ≤ 1; (13)
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f4(x) =











0.5 + 1.8 x 0 ≤ x < 0.25

1.4 − 1.8 x 0.25 ≤ x < 0.75

−1.3 + 1.8 x 0.75 ≤ x ≤ 1;

(14)

In Figure 1, we show the plots of the approximation of fi using the function yi
L(x). The

functions fi(x), i ∈ {1, 2, 3, 4}, are represented by red lines; while the corresponding approx-
imation functions yi

L(x) are represented by blue lines; the straight line segments in L0 are
represented with circles at the extremities, and the straight line segments in L1 with × at
the extremities. Note that the four functions are quite different and the approximations are
very good (in the domain [0, 1]). Observe that, for only function f4(x), it is necessary to use
two straight line segments for each class, where one of them is degenerated into a point; in
all other functions, just one straight line segment for each class is sufficient to make a good
approximation. In Table 1, we provide the obtained empirical risk of these approximations.

Function absolute error squared error

f1(x) 0.002011 0.000005
f2(x) 0.000367 0.000011
f3(x) 0.008240 0.000090
f4(x) 0.009094 0.000120

Table 1. Empirical risk of the approximations of the functions fi.

Fig. 1. Plots of the functions fi(x) and the corresponding approximations yi
L(x), i = 1, 2, 3, 4,

with the respectives straight line segments.

www.intechopen.com



Pattern Recognition Based on Straight Line Segments 173

3.1 Training Algorithm

The objective of the training algorithm is to find two sets of straight line segments that mini-
mize the functional risk (Eq. 3). However, usually it is impossible to compute the functional
risk, since the probability distribution is unknown in many situations. Therefore, the func-
tional risk must be estimated by the empirical risk (Eq. 4). In this way, the training algorithm
is based on the empirical risk minimization principle (Vapnik, 1999). More formally, given a
sample SN , the training algorithm must find two sets of straight line segments, L0 and L1, that
minimize the empirical risk RSN

(α), where the parameter vector α is defined by the positions
of the straight line segments in both L0 and L1. The training algorithm is divided into two
phases:

1. Placing Algorithm: In this phase, a heuristic pre-allocates (initializes) the straight line
segments.

2. Tuning Process: In this phase, the straight line segments are moved from the initial
position driven by an optimization algorithm thats tries to minimize the empirical risk.

3.2 Placing Algorithm

The first phase of the training algorithm consists of pre-allocating (that is, finding the initial
positions of) the straight line segments which will be tuned later. The Placing Algorithm (see
below) is based on the fact that the points in the region of the feature space that are near to
the straight line segments belonging to L0 (respectively, L1) make the function yL(x) tend to 0
(respectively, 1). Thus the first step of the Placing algorithm is to split the sample SN into two
groups of point sets X0 and X1 (see Lines 4 and 5 of the Placing algorithm). Group X0 ⊆ R

d

will initialize the straight line segments of L0; while group X1 ⊆ R
d will initialize the straight

line segments of L1. At Line 9, the k-means clustering algorithm(Duda et al., 2001; Jain et al.,
1999) is applied to each group Xj (j = 0, 1) in order to find k clusters C0, C1, . . . , Ck−1 ⊆ Xj,

with their corresponding centers c0, c1, . . . , ck−1 ∈ R
d. After that, the k-means clustering is

applied again to each cluster in Ci (i = 0, 1, . . . , k − 1) using k = 2 (Line 11 of the Placing
algorithm). The two centers d0 and d1 returned by 2-means determines the extremities of
a straight line segment for each cluster Ci. Since we have k clusters Ci for each class, we
have in total k straight line segments for each class. After that, each extremity of the straight
line segments is extended in one extra dimension and the value of the corresponding extra
coordinate is initially set to 1 for all extremities (see Lines 12 to 14). This value will be adjusted
in the tuning process. Although any other clustering algorithm could be used in the Placing
algorithm, the k-means was chosen as clustering algorithm because it is simple to implement
and has fast convergence (Duda et al., 2001; Jain et al., 1999).

1: PLACING(SN , nSLS)
2: Input: A sample SN = {(xi, yi) : xi ∈ R

d, yi ∈ {0, 1}, i = 1, 2, . . . , N} and nSLS
(number of straight line segments for each set L0 and L1).

3: Output: Two sets of straight line segments L0 and L1 (with nSLS elements in each one).
4: X0 ← {xi ∈ R

d : (xi, yi) ∈ SN and yi = 0};
5: X1 ← {xi ∈ R

d : (xi, yi) ∈ S and yi = 1};
6: for j ← 0 to 1 do
7: Lj ← ∅;
8: k ← nSLS;
9: [(c0, C0), . . . , (ck−1, Ck−1)] ← k-means(Xj);

10: for i ← 0 to k − 1 do
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11: [(d0, D0), (d1, D1)] ← 2-means(Ci);
12: ℓ ← 1;
13: p ← (d0, ℓ);
14: q ← (d1, ℓ);
15: Lj ← Lj ∪ pq;
16: end for
17: end for
18: return L0, L1;

The computational complexity of k-means is O(N · d · k · i), where i is the number of inter-
actions, typically less than N. As k-means is applied twice to the sample, the computational
complexity for placing is O(N · d · k · i). Considering i ≪ N, with k = nSLS at Line 9 and k = 2
at Line 11, it is possible to conclude that the computational complexity of Placing Algorithm
is O(N · d · nSLS) (Lingras & Yao, 2002).

3.3 Tuning the Straight Line Segments

The natural way to find the positions of the straight line segments that minimize the empirical
risk (Eq. 4) is to find a point where its derivative is equal to zero. Since this calculation is not
analytically feasible, we opted to use the gradient descent method. Since the gradient descent
does not guarantee the global minimum, the final positions of the straight line segments will
depend on the their initial position computed previouly by the Placing algorithm. In this way,
the Placing algorithm is very important, because it can make the second part of the training
algorithm to converge to a “good” local solution.

3.4 Gradient Descent

The optimization gradient descent method consists of moving in small steps the parameters
(the vector α) in same direction of the gradient of the objective function in order to minimize
(or maximize) its value (Michie et al., 1973).
Each displacement of vector α is proportional to γ which is a real positive number. If γ is
too big, the displacement can be exaggerated and the empirical risk can increase instead of
decrease. On the order hand, if γ was too small, the minimization process of the empirical
risk can be too slow. It is possible to implement the gradient descent using a constant value
for γ, but in this case, it is necessary to chose small values for γ to avoid exaggerate moves.
Because of that, we use a dynamic γ. For each iteration, if the empirical risk decreases, γ

increases proportionally to 1 + γinc (Line 11 of the GradDesc algorithm). On the other hand,
if the iteration increases the empirical risk, the value of γ decreases proportionally to γdec

(Line 15 of the GradDesc algorithm). Although the value of γ is updated dynamically during
the training process, it must not be exaggerated in order to avoid the instability of the initial
steps of tuning process. Empirically, we observed that γ stabilizes around 0.1, so this value is
adopted for the initial γ. To compute the γ value dynamically it is interesting not to change
the value of γ too much when the empirical risk is decreasing, and it is also interesting to
decrease the value of γ quickly when the iteration increases the empirical risk. Therefore we
set γinc = 0.1 and γdec = 0.5.

1: GRADDESC (α, Imax, Imin, γini, γinc, γdec, Dispmin, Rmin);
2: Input: The vector α that must be optimized; the maximum number Imax of iterations; the

minimum number Imin of iterations; the initial value γini for γ; the increasing rate
γinc for γ; the decreasing rate γdec for γ; the minimum displacement Dispmin; and
finally the minimum empirical risk Rmin.
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3: Output: the vector α with optimized values.
4: αbest ← α; γ ← γinit; R0 ← RSN

(α); I ← 0;
5: repeat
6: dR ← ▽αRSN

(α);
7: α ← α − γ · dR;
8: Disp ← |γ · dR|/

√

dim(α);
9: R1 ← RSN

(α);
10: if R0 ≥ R1 then
11: γ ← γ · (1 + γinc) ;
12: αbest ← α;
13: R0 ← R1;
14: else
15: γ ← γ · γdec ;
16: α ← αbest;
17: end if
18: I ← I + 1;
19: until ((I > Imin) and ((I > Imax) or (Disp < Dispmin) or (R1 < Rmin)));
20: return αbest;

Four conditions are used to stop the gradient descent process. First, the condition I > Imin

guaranties a minimum number Imin of iterations. Secondly, the number of iterations can not
exceed Imax to guarantee that the algorithm will stop; thirdly, if the displacement of the pa-
rameters is smaller than Dispmin, it may mean that the parameter vector has achieved a local
minimum; and the fourth criterion is useful when it is known what is the minimal empirical
risk in order to avoid overfitting.
Note that the value of displacement Disp is computed using |γ · dR| and is divided by the
square root of the dimension of vector α (see Line 8). This division normalizes the displace-
ment with respect to the number of parameters. Thus, the value for Dispmin is normalized for
all optimization problem. Empirically we observed that with Dispmin = 0.001 the empirical
risk is stabilized.

3.5 The Proposed Training Algorithm

Before tuning of the extremities of the initial straight line segments (that is, adjusting their
positions), it is necessary to determine the best initial value ℓ for the last coordinate of all
extremities of the straight line segments (the value of the variable ℓ which was initialized with
1 in the Placing algorithm) and for the constant g (see Eq. 10).
In previous versions of the training algorithm, the initial value of ℓ was determined by the
standard deviation of the examples in the sample (Ribeiro & Hashimoto, 2006; 2008). This
heuristic aims at making the initial displacement of the last coordinate proportional to the
examples dispersion. Also, in a previous version, the value of g was also chosen by a heuristic
that makes the values of yL(x) have a uniform distribution (Ribeiro & Hashimoto, 2008). This
way, low and high values of g is prevented, which make yL(x) tend to 0.5 and to 0 or 1,
respectively. Although those heuristics work well, they do not consider the empirical risk. So,
here, we have applied the gradient descent to find better values for both ℓ and g.
In our case we desire to minimize the empirical risk. The training algorithm applies the gra-
dient descent twice: first to find the best values for ℓ and g; and, secondly to find the best
position for all extremities of all straight line segments (of course, including all their last coor-
dinates).
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1: TRAINING (SN , nSLS, Imax, Imin, γini, γinc, γdec, Dispmin, Rmin );
2: Input: A sample SN = {(xi, yi) : xi ∈ R

d; yi ∈ {0, 1}, i = 1, 2, . . . , N} and nSLS (number
of straight line segments for each set L0 and L1). The other inputs are: the maxi-
mum number Imax of iterations; the minimum number Imin of iterations; the initial
value γini for γ; the increasing rate γinc for γ; the decreasing rate γdec for γ; the
minimum displacement Dispmin; and finally the minimum empirical risk Rmin.

3: Output: two sets of straight line segments L0 and L1.
4: [L0, L1] ← Placing(SN , nSLS);
5: g ← 1;
6: α1 ← Vectorize(g, ℓ);
7: (g, ℓ) ← GradDesc (α1, Imax, Imin, γini, γinc, γdec, Dispmin, Rmin );
8: α2 ← Vectorize(L0, L1);
9: (L0, L1) ← GradDesc (α2, Imax, Imin, γini, γinc, γdec, Dispmin, Rmin );

10: return L0, L1 and g;

The parameters g and ℓ define the vector α1, where g is a positive real number that defines
how “smooth” the sigmoid yL(x) will be with respect to T(x,L); and ℓ is the value for the last
coordinate of all straight line segments that is initially equal to 1 for all segments.
The function Vectorize(g, ℓ) returns the following parameter vector α1:

α1 =

[

g
ℓ

]

. (15)

The function Vectorize(L0, L1) returns the parameter vector α2 for the second gradient descent
whose coordinates are the extremities of each straight line segment (including all their last
coordinates):

α2 =















p
j,k
h
...

q
j,k
h
...















, j ∈ {0, 1}, k ∈ {1, . . . , |L|}, h ∈ {1, . . . , d + 1}, (16)

where L = |L0| (assuming that |L0| = |L1|) and p
j,k
h is the value of the h-th coordinate of the

extremity p of the k-th straight line segment pkqk of Lj. The other extremity q of pkqk ∈ Lj

is represented in analogous way. The function vectorize(L0, L1) returns the vector α2 as de-
scribed in Eq. 16. We should remark that after the application of the second gradient descent,
the last coordinates of all straight line segments are not equal anymore.
We use the square error (Eq. 2) as the loss function. Thus, the empirical risk is defined by
Eqs. 17 and 18. To simplify the notation, we will omit the parameters of some functions such

as: Ti = T(xi,L), yL = yL(xi) and pdist
j
i,k = pdist(xi, L

j
k). In the following, we present the

calculations for the gradient of RSN
(α), where α = α2, that is, ▽α2 RSN

. Let

erri(yL) = yL(xi)− yi and (17)

RSN
(α) =

1

N

N

∑
i=1

[erri(yL)]
2. (18)

The gradient ▽α2 RSN
is defined for j = {0, 1}, k = {1, . . . , |L|} and h = {1, . . . , d + 1} as:
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▽α2 RSN
(α2) =



















∂RSN

∂p
j,k
h

...
∂RSN

∂q
j,k
h

...



















, (19)

where

∂RSN

∂p
j,k
h

=
1

N

n

∑
i=1

2 · erri
g

eg·Ti + e−g·Ti + 2

(−1)j

(pdist
j
i,k + ǫ)2

· (20)

(

p
j,k
h − xi,h

2 · dist(xi, pj,k)
−

p
j,k
h − q

j,k
h

2 · dist(pj,k, qj,k)

)

. (21)

The calculations of the parameters for the first gradient are g and ℓ. The value for the last

coordinate of all straight line segments is set p
j,k
d+1 = q

j,k
d+1 = ℓ (that is, p

j,k
d+1 and q

j,k
d+1 are

replaced with ℓ in the empirical risk RSN
making it as a function of g and ℓ). Then, we have:

▽α1 RSN
(α1) =





∂RSN
∂g

∂RSN
∂ℓ



 , (22)

∂RSN

∂g
=

N

∑
i=1

2 erri Ti eg Ti

e2 g Ti + 2 eg Ti + 1
and (23)

∂RSN

∂ℓ
=

1

∑
j=0

|Lj |

∑
k=1





∂RSN

∂p
j,k
d+1

+
∂RSN

∂q
j,k
d+1



 . (24)

By the beginning of the first gradient, the last coordinates p
j,k
d+1 = q

j,k
d+1 = 1. Between the

first gradient and the beginning of the second gradient, the last coordinates p
j,k
d+1 = q

j,k
d+1 = ℓ

for all straight line segments. Finally, after the second gradient each last coordinate can have
different values among them.
The time complexity for the Training algorithm is the sum of the complexity of Placing Algo-
rithm plus twice the complexity of GradDesc Algorithm, that is O(N · d · nSLS) + 2 O(N · d ·
nSLS · Imax), which is equal to O(N · d · nSLS · Imax).
To avoid overfitting and unnecessary increasing of computational time complexity, the best
choice is to use a minimum number of straight line segments (for each class) for which the
SLS method still has a good classification performance.

4. Experimental Results

In this section we describe the experiments we performed in order to evaluate the SLS method
and compare it with other methods. For that, the experiments were divided into two parts:
the first one uses artificial data to evaluate the behavior of the SLS method; while the second
one uses public datasets to analyse the SLS method with real applications and compare our
results with the results obtained by other methods.
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4.1 Artificial Data

The artificial data for each class C ∈ {0, 1} were generated using probability distributions
associated to the density function defined by the sum of M two dimensional normal density
functions as shown in Eq. 25:

p(x, y = C) =
M

∑
i=1

PC
i · Normal(x, µ

C
i , Σ

C
i ), (25)

where µC
i ∈ R

2 is the center of the normal density function, ΣC
i is the 2 × 2 covariance matrix

and PC
i is a real number such that ∑

M
i=1 PC

i = 1. In general, each covariance matrix ΣC is
positive semidefinite matrix and has the following form:

(

(σ1)
2 ρσ1σ2

ρσ1σ2 (σ2)
2

)

, (26)

where ρ is the correlation between the two random variables x1 and x2, and σj, for j = 1, 2,
is the standard deviation of xj. We designed four probability density functions called Simple,
distX, distS and DistF. Each probability density function (pdf) is defined as follows:

Simple pdf:

P0
1 = 1.0 P1

1 = 1.0

µ0
1 = (0.6, 0.6) µ1

1 = (0.4, 0.4)

Σ0
1 =

(

0.010 −0.009
−0.009 0.010

)

Σ1
1 =

(

0.010 0.009
0.009 0.010

)

(27)

DistX pdf:

P0
1 = P0

2 = 0.5 P1
1 = P1

2 = 0.5

µ0
1 = (0.25, 0.25) µ1

1 = (0.25, 0.75)

µ0
2 = (0.75, 0.75) µ1

2 = (0.75, 0.25)

ΣC
i =

(

0.04 0.00
0.00 0.04

)

, C ∈ {0, 1} and i ∈ {1, 2}

(28)

DistS pdf:

P0
1 = P0

2 = 0.5 P1
1 = P1

2 = 0.5

µ0
1 = (0.4, 0.4) µ1

1 = (0.6, 0.2)

µ0
2 = (0.4, 0.8) µ1

2 = (0.6, 0.6)

ΣC
i =

(

0.02 0.00
0.00 0.01

)

, C ∈ {0, 1} and i ∈ {1, 2}

(29)

www.intechopen.com



Pattern Recognition Based on Straight Line Segments 179

DistF pdf:

P0
1 = 0.574 P1

1 = 0.574

P0
2 = P0

3 = 0.213 P1
2 = P1

3 = 0.213

µ0
1 = (0.125, 0.5) µ1

1 = (0.875, 0.5)

µ0
2 = (0.5, 0.375) µ1

2 = (0.5, 0.125)

µ0
3 = (0.5, 0.875) µ1

3 = (0.5, 0.625)

Σ
C
1 =

(

0.010 0.000
0.000 0.040

)

Σ
C
2 =

(

0.012 0.000
0.000 0.010

)

Σ
C
3 =

(

0.012 0.000
0.000 0.010

)

, C ∈ {0, 1}.

(30)

Figure 2 shows four graphics, each one representing one of the probability density functions.
In Figure 3, there are four samples with 800 examples, each one drawn from one of the prob-
ability distributions associated with the 4 probability density functions.

Fig. 2. Representation of the probability density functions: a) Simple, b) DistX, c) DistS and d)
DistF.
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Fig. 3. Samples drawn from the probability distributions with 800 examples: a) Simple, b)
DistX, c) DistS and d) DistF.

Since the probability density function is known, it is possible to compute the functional risk
R(α) (see Eq. 3) of the SLS and Bayes classifiers (Duda et al., 2001). Consequently, it is possible
to compute the actual probability of correct classification, that is 1 − R(α), for both classifiers.
For that, we used the numerical integration considering the values for x ∈ R

2 inside the
rectangle defined by the corners (−0.5, −0.5) and (1.5, 1.5). Inside this rectangle, there are
more than 99% of examples for all probability density functions. The numerical integration
was done using 160 000 points. The probability of correct classification for Bayes classifier for
each probability density function is shown in Table 2.

Probability Density Function Bayes (%)
Simple 96.95

DistX 81.11
DistS 84.39
DistF 91.43

Table 2. Probability of Correct Classification using Bayes Classifier.
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For each probability density function (Simple, DistX, DistS and DistF), 4 × 3 = 12 samples (3
for each quantity of examples) with 100, 200, 400 and 800 examples were generated. The SLS
training algorithm using 1, 2, 3, and 4 straight line segments for each class was applied to each
sample, totalling 192 applications of the training algorithm. The parameters used for training
algorithm are shown in Table 3.

Parameter Value

Imax 10 000

min 20
γinit 0.1
γinc 0.1
γdec 0.5

Deslmin 0.001
Rmin 0.0001

Table 3. Training parameters for the SLS Training Algorithm.

The obtained results for the probability density functions Simple, DistX, DistS and DistF are
respectively shown in Tables 4, 5, 6 and 7. The rows of these tables present the results using
the same number of examples; while the columns show the results with the same number of
straight line segments for each class. On left part of each column, it is presented the best result
among the three performed tests with the same number of examples and de same number of
straight line segments for each class. On right part of each column, it is shown the average
of probability of correct classification for the three tests. The results shown in bold have the
difference from the respective Bayes correct classification less than 1%.
In Figure 4, there are four response maps, one for each probability density function. In these
maps, the gray scale is proportional to yL(x) ∈ [0, 1] value, where black represents 0 and white
represents 1. In these maps, the straight line segments are projected to a bidimensional plane.
For these projections of the straight line segments, white represents class 0 and black class 1.
Since the probability density functions are known, we can compute and compare the prob-
ability of correct classification of SLS and Bayes classifiers. The results show that the SLS
method achieved good performace. For all cases, we obtained a difference that is less than 1%
comparing to Bayes classifier.
For distributions DistS and DistF (that have a more complex decision boundary), it was nec-
essary to add more straight line segments for each class to obtain a good performace. For
distributions Simple and DistX, just one straight line segment for each class was enough for
a good performace. As expected, the more training examples, the better performace of the
classifier.

4.2 Experiments with Public Datasets

To compare the performance of SLS with other methods, we did experiments using 8 public
datasets. These datasets were chosen from (Van Gestel et al., 2004) in which a benchmark-
ing for SVM and other methods can be found. In this way, it is possible to compare our
results with theirs (Van Gestel et al., 2004). The datasets taken from (Van Gestel et al., 2004)
correspond only to binary classification. All datasets are available in UCI Machine Learning
Repository (Asuncion & Newman, 2007) and they are Australian Credit Approval (australian),
Breast Cancer Wisconsin (breast-cancer), Pima Indians Diabetes (diabetes), German Credit Data
(german), Heart (heart), Ionosphere (ionosphere), Liver Disorders (liver-disorders) and Sonar,
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Simple (Bayes = 96.951 %)
# of SLS/class 1 2 3 4

Max. Avg. Max. Avg. Max. Avg. Max. Avg.
100 96.40 95.93 96.69 96.07 96.41 96.17 96.32 95.97
200 96.43 96.37 96.51 96.47 96.45 96.40 96.44 96.39
400 96.64 96.60 96.65 96.54 96.63 96.55 96.56 96.47
800 96.80 96.52 96.55 96.48 96.79 96.57 96.58 96.48

Table 4. Results for Simple pdf.

DistX (Bayes = 81.105 %)
# of SLS/class 1 2 3 4

Max. Avg. Max. Avg. Max. Avg. Max. Avg.
100 78.86 78.45 78.37 77.68 76.46 76.36 78.39 77.65
200 80.49 80.33 79.98 79.75 79.61 79.29 79.70 79.32
400 80.90 80.63 80.76 80.41 80.73 80.45 80.74 79.86
800 81.03 80.86 80.98 80.77 81.06 80.84 80.86 80.75

Table 5. Results for DistX pdf.

DistS ( Bayes = 84.386 %)
# of SLS/class 1 2 3 4

Max. Avg. Max. Avg. Max. Avg. Max. Avg.
100 82.85 80.67 82.94 81.12 83.76 82.23 83.58 82.21
200 81.88 80.80 83.54 82.92 83.77 83.11 83.66 81.94
400 81.17 80.29 83.94 83.64 84.03 83.78 83.99 81.50
800 80.83 80.61 83.90 83.78 83.98 83.80 83.98 83.88

Table 6. Results for DistS pdf.

DistF (Bayes = 91.435 %)
# of SLS/class 1 2 3 4

Max. Avg. Max. Avg. Max. Avg. Max. Avg.
100 85.25 84.72 89.12 88.94 90.46 88.68 89.84 87.91
200 83.56 83.46 90.27 89.64 89.79 89.72 89.86 89.57
400 85.60 84.61 90.47 90.25 90.45 90.22 90.84 90.63
800 83.61 83.53 90.12 89.80 90.53 90.05 90.68 90.41

Table 7. Results for DistF pdf.

Mines vs. Rocks (sonar). The number of attributes in each dataset is shown in Table 8. For more
detailed information, we recommend to visit the UCI Machine Learning Repository (Asuncion
& Newman, 2007).
We performed the experiment using the same methodology described in (Van Gestel et al.,
2004), that is, for each training, the sample is randomly split into two sets: one for training
containing 2/3 of examples; and other for the test phase with 1/3 of examples. This split-
ing process is repeated ten times for each dataset. Besides, the training parameters used for
training the SLS method were the same values used for artificial data (see Table 3).
Table 8 shows the average and the standard deviation (presented between parenthesis) of
correct classification. The results for the SLS method using 1, 2, 3, 4, 6, 8, and 10 straight line
segments for each class, respectively, are shown at Rows from 1 to 7. The results obtained
by Van Gestel et al. (2004) using SVM and k-NN are presented at Rows from 8 to 17. Finally,
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Fig. 4. Response maps for each probability density function:
a) Simple, sample with 800 examples and using 1 straight line segment for each class;
b) DistX, sample with 800 examples and using 1 straight line segment for each class;
c) DistS, sample with 800 examples and using 2 straight line segments for each class;
d) DistF, sample with 400 examples and using 3 straight line segments for each class.

the results using SVM with RBF and polynomial kernels (Eqs. 31 and 32 - in these equations,
δ and ̺ are kernel parameters and C controls how the errors are penalized) are shown at
Rows 18 and 22. In particular, the last two results were obtained using the LibSVM software
developed by Chang & Lin (2001) with parameters δ, C and ̺ (shown at Rows 20, 21, 24, 25
and 26) chosen by an exhaustive search for the best combination using the values presented
in Table 9.
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australian breast-cancer diabetes german heart ionosphere liver
Ntest 690 683 768 1000 270 351
d 14 9 8 20 13 33

1 SLS 1 86.7 (1.5) 97.7 (0.6) 76.4 (1.8) 76.4 (1.0) 81.7 (4.6) 94.1 (1.7) 59.9
2 SLS 2 86.3 (1.9) 97.8 (0.7) 74.8 (2.5) 76.7 (2.2) 80.6 (3.9) 94.6 (1.4) 67.6
3 SLS 3 86.5 (1.7) 98.1 (0.8) 74.2 (2.0) 75.9 (2.1) 81.7 (3.6) 94.4 (2.1) 70.1

4 SLS 4 86.3 (1.8) 98.1 (0.7) 73.7 (1.7) 76.3 (1.4) 81.9 (3.3) 93.4 (3.1) 70.0
5 SLS 6 86.1 (1.6) 98.0 (0.7) 72.4 (2.9) 76.5 (1.6) 81.0 (2.8) 94.9 (1.3) 65.3
6 SLS 8 87.0 (1.8) 97.9 (0.8) 72.4 (2.4) 76.2 (1.6) 81.4 (3.4) 94.8 (1.6) 65.8
7 SLS 10 86.8 (1.8) 97.8 (0.7) 72.2 (3.2) 76.4 (1.6) 82.2 (3.3) 95.2 (2.6) 63.4

8 RBFLS − SVM 87.0 (2.1) 96.4 (1.0) 76.8 (1.7) 76.3 (1.4) 84.7 (4.8) 96.0 (2.1) 70.2
9 RBFLS − SVMF 86.4 (1.9) 96.8 (0.7) 72.9 (2.0) 70.8 (2.4) 83.2 (5.0) 93.4 (2.7) 65.1

10 LinLS − SVM 86.8 (2.2) 95.8 (1.0) 76.8 (1.8) 75.4 (2.3) 84.9 (4.5) 87.9 (2.0) 65.6
11 LinLS − SVMF 86.5 (2.1) 96.9 (0.7) 73.1 (1.7) 68.6 (2.3) 82.8 (4.4) 85.0 (3.5) 61.8
12 PolLS − SVM 86.5 (2.2) 96.4 (0.9) 77.0 (1.8) 76.3 (1.4) 83.7 (3.9) 91.0 (2.5) 70.4
13 PolLS − SVMF 86.6 (2.2) 96.9 (0.7) 73.0 (1.8) 70.3 (2.3) 82.4 (4.6) 91.7 (2.6) 65.3
14 RBFSVM 86.3 (1.8) 96.4 (1.0) 77.3 (2.2) 75.9 (1.4) 84.7 (4.8) 95.4 (1.7) 70.4
15 LinSVM 86.7 (2.4) 96.3 (1.0) 77.0 (2.4) 75.4 (1.7) 83.2 (4.2) 87.1 (3.4) 67.7
16 1 − NN 81.1 (1.9) 95.3 (1.1) 69.6 (2.4) 69.3 (2.6) 74.3 (4.2) 87.2 (2.8) 61.3
17 10 − NN 86.4 (1.3) 96.4 (1.2) 73.6 (2.4) 72.6 (1.7) 80.0 (4.3) 85.9 (2.5) 60.5
18 libSVMRBF 87.4 (1.6) 97.8 (0.5) 77.8 (1.8) 77.3 (0.5) 85.1 (3.3) 95.4 (1.9) 72.7

19 # SV 407.7 46 277.9 371.9 145.8 65.6
20 γ 0.01 0.01 0.01 0.01 0.1 0.1
21 C 0.1 10 50 20 0.1 10
22 libSVMPol 87.3 (1.7) 97.9 (0.9) 77.3 (2.2) 76.4 (1.4) 82.4 (4.0) 92.8 (2.6) 71.5
23 # SV 158.9 52.8 277.2 386.5 143.2 78.3
24 δ 2 0.01 5 0.01 0.01 2
25 C 0.01 200 0.01 50 20 0.01
26 ̺ 2 2 2 2 2 2

The results presented in this table are the average of correct classification for 10 tests. The number in parenthesis
For each column there are two values in bold: the first one is the best result using SLS method and second one is
The underlined numbers for the SLS method are statistically equal to the best results among the other methods

Table 8. Average of Correct classification for public datasets.
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K(xi, xj) = e
−δ‖xi − xj‖

2
(31)

K(xi, xj) =
(

δ
〈

xi, xj

〉)̺
. (32)

C 0.01, 0.1, 10, 20, 50, 100, 200
δ 0.01, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0
̺ 2, 4, 6, 8, 10

Table 9. Parameters for RFB and Polynomial Kernels (Eqs. 31 and 32).

In order to have a good view of the results, the average of correct classification for each dataset
can also be viewed in the plots presented in Figure 5.
By observing the plots in Figure 5, we can see that the good performance of SLS method with
respect to the others is well-posted on the graphic of the breast-cancer dataset. More details
about the results can be viewed on Table 8. In particular, this table is divided in two blocks:
the first one presents the results of the SLS method (Rows from 1 to 7); while the second one
shows the results using SVM and k-NN taken from(Van Gestel et al., 2004). The best results
in each block are in bold. We also applied the t-test with 95% of confidence (Dietterich, 1998)
to the results of the SLS method and the best result of SVM and k-NN. The underlined values
in the table indicate that the results obtained by SLS method are statistically equal to the best
result among the others. By observing Table 8, it is possible to notice that by t-test the SLS
method has always the performance significantly equal to the performance of SVM. In the
case of breast-cancer dataset, the performance of SLS method was better than SVM.
On one hand, the computational time complexity of SVM on test phase is Θ(NSV · K), where
NSV is the number of support vectors and K is the computational complexity for computing
the kernel (Burges, 1998). The time complexity for both polynomial and RBF kernel compu-
tations is proportional to distance computations. On the other hand, the computational time
complexity of the SLS method on test phase is Θ(|L0| + |L1|). Note that, for each straight
line segment, there are two distance computations. Then, with respect to the computational
complexity, one straight line segment in SLS is equivalent to two support vectors in SVM.
In the experiments presented in this chapter, for the SLS method, we used no more than 10
straight line segments for each class meaning the maximum of 20 straight line segments. This
is equivalent to 40 support vectors in SVM. Note that, at Rows 19 and 23 in Table 8, the lowest
average of support vectors is 46 in breast-cancer dataset with RBF kernel. However, in general,
the number of support vectors is commonly higher than it. Therefore, comparing the compu-
tational complexity of both methods, we can conclude that the SLS method is computationally
more efficient than SVM for similar classification performance.
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SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

76 78 80 82 84 86 88

Australian

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

93,5 94 94,5 95 95,5 96 96,5 97 97,5 98 98,5

Breast Cancer

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

64 66 68 70 72 74 76 78 80

Diabetes

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

64 66 68 70 72 74 76 78

German

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

68 70 72 74 76 78 80 82 84 86

Heart

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM
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Fig. 5. Graphics showing the average of correct classification for public datasets.

www.intechopen.com



Pattern Recognition Based on Straight Line Segments 187

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

76 78 80 82 84 86 88

Australian

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

93,5 94 94,5 95 95,5 96 96,5 97 97,5 98 98,5

Breast Cancer

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

64 66 68 70 72 74 76 78 80

Diabetes

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

64 66 68 70 72 74 76 78

German

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

68 70 72 74 76 78 80 82 84 86

Heart

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

78 80 82 84 86 88 90 92 94 96 98

Ionosphere

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

0 10 20 30 40 50 60 70 80

Live-disorder

SLS 1 

SLS 2 

SLS 3 

SLS 4 

SLS 6 

SLS 8 

SLS 10 

RBF LS-SVM

RBF LS-SVM_F

Lin LS-SVM

Lin LS-SVM_F

Pol LS-SVM

Pol LS-SVM_F

RBF SVM

Lin SVM

1-NN

10-NN

libSVM RBF

libSVM Pol

60 65 70 75 80 85 90

Sonar

5. Conclusion

In this chapter we presented a new method for Pattern Recognition based on distance be-
tween points and straight line segments called SLS method. Although the design of the SLS
method was not initially based on any other method, it has some similarities to the Learning
Vector Quantization (LVQ) and the Nearest Feature Line (NFL) methods so that SLS can take
the advantages of both methods. For instance, SLS has the low computational complexity of
LVQ and the interpolation capacity of straight lines of NFL. The experiments presented here
confirm these advantages showing that the SLS method has lower computational complexity
than SVM on the test phase with similar classification performance. By observing these re-
sults, we can conclude that the SLS method is a new and good option for supervised pattern
recognition systems.
The SLS method also opens new perspectives for future research on Pattern Recognition. One
of the main interest is to improve the training algorithm (which outputs a local optimal so-
lution) by solving the underlying nonlinear optimization problem using other methods than
gradient descent (for example, genetic algorithms). Other topics of interest are to extend the
method for multiclassification and regression problems.
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