125 research outputs found

    Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    Get PDF
    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications

    Comparison of Ertapenem and Ceftriaxone Therapy for Acute Pyelonephritis and Other Complicated Urinary Tract Infections in Korean Adults: A Randomized, Double-Blind, Multicenter Trial

    Get PDF
    The efficacy and safety of ertapenem, 1 g once daily, were compared with that of ceftriaxone, 2 g once daily, for the treatment of adults with acute pyelonephritis (APN) and complicated urinary tract infections (cUTIs) in a prospective, multicenter, double-blinded, randomized study. After ≥ 3 days of parenteral study therapy, patients could be switched to an oral agent. Of 271 patients who were initially stratified by APN (n = 210) or other cUTIs (n = 61), 66 (48.9%) in the ertapenem group and 71 (52.2%) in the ceftriaxone group were microbiologically evaluable. The mean duration of parenteral and total therapy, respectively, was 5.6 and 13.8 days for ertapenem and 5.8 and 13.8 days for ceftriaxone. The most common pathogen was Escherichia coli. At the primary efficacy endpoint 5-9 days after treatment, 58 (87.9%) patients in the ertapenem group and 63 (88.7%) in the ceftriaxone had a favorable microbiological response. When compared by stratum and severity, the outcomes in the two groups were equivalent. The frequency and severity of drug-related adverse events were generally similar in both treatment groups. The results indicate that ertapenem is highly effective and safe for the treatment of APN and cUTIs

    Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    Get PDF
    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications

    Area-Wide Suppression of the Mediterranean Fruit Fly, Ceratitis capitata, and the Oriental Fruit Fly, Bactrocera dorsalis, in Kamuela, Hawaii

    Get PDF
    The United States Department of Agriculture's Agricultural Research Service initiated an area-wide fruit fly management program in Hawaii in 2000. The first demonstration site was established in Kamuela, Hawaii, USA. This paper documents suppression of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in a 40 km2 area containing urban, rural and agricultural zones during a 6 year period. The suppression techniques included sanitation, GF-120 NF Naturalyte Fruit Fly Bait sprays, male annihilation, Biolure® traps, and parasitoids against C. capitata and B. dorsalis. In addition, small numbers of sterile males were released against B. dorsalis. Substantial reductions in fruit infestation levels were achieved for both species (90.7 and 60.7% for C. capitata and B. dorsalis, respectively) throughout the treatment period. Fruit fly captures in the 40 km2 treatment area were significantly lower during the 6 year period than those recorded in three non-treated areas. The strategy of combining suppression techniques in an area-wide approach is discussed

    Protein-Protein Interactions of Tandem Affinity Purified Protein Kinases from Rice

    Get PDF
    Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex

    Plasma Proteomic Profiling in HIV-1 Infected Methamphetamine Abusers

    Get PDF
    We wanted to determine whether methamphetamine use affects a subset of plasma proteins in HIV-infected persons. Plasma samples from two visits were identified for subjects from four groups: HIV+, ongoing, persistent METH use; HIV+, short-term METH abstinent; HIV+, long term METH abstinence; HIV negative, no history of METH use. Among 390 proteins identified, 28 showed significant changes in expression in the HIV+/persistent METH+ group over the two visits, which were not attributable to HIV itself. These proteins were involved in complement, coagulation pathways and oxidative stress. Continuous METH use is an unstable condition, altering levels of a number of plasma proteins

    Integrated Economic and Climate Modeling

    Get PDF
    This survey examines the history and current practice in integrated assessment models (IAMs) of the economics of climate change. It begins with a review of the emerging problem of climate change. The next section provides a brief sketch of the rise of IAMs in the 1970s and beyond. The subsequent section is an extended exposition of one IAM, the DICE/RICE family of models. The purpose of this description is to provide readers an example of how such a model is developed and what the major components are. The final section discusses major important open questions that continue to occupy IAM modelers. These involve issues such as the discount rate, uncertainty, the social cost of carbon, the potential for catastrophic climate change, algorithms, and fat-tailed distributions. These issues are ones that pose both deep intellectual challenges as well as important policy implications for climate change and climate-change policy

    Why do banks promise to pay par on demand?

    Get PDF
    We survey the theories of why banks promise to pay par on demand and examine evidence about the conditions under which banks have promised to pay the par value of deposits and banknotes on demand when holding only fractional reserves. The theoretical literature can be broadly divided into four strands: liquidity provision, asymmetric information, legal restrictions, and a medium of exchange. We assume that it is not zero cost to make a promise to redeem a liability at par value on demand. If so, then the conditions in the theories that result in par redemption are possible explanations of why banks promise to pay par on demand. If the explanation based on customers’ demand for liquidity is correct, payment of deposits at par will be promised when banks hold assets that are illiquid in the short run. If the asymmetric-information explanation based on the difficulty of valuing assets is correct, the marketability of banks’ assets determines whether banks promise to pay par. If the legal restrictions explanation of par redemption is correct, banks will not promise to pay par if they are not required to do so. If the transaction explanation is correct, banks will promise to pay par value only if the deposits are used in transactions. After the survey of the theoretical literature, we examine the history of banking in several countries in different eras: fourth-century Athens, medieval Italy, Japan, and free banking and money market mutual funds in the United States. We find that all of the theories can explain some of the observed banking arrangements, and none explain all of them

    Power, Food and Agriculture: Implications for Farmers, Consumers and Communities

    Full text link
    corecore